1
|
Li Q, Xing S, Zhang H, Mao X, Xiao M, Wang Y. FISH combined with RT-PCR facilitates classification of Chinese adult patients with B-other ALL through improved identification of ZNF384 rearrangement. Leuk Lymphoma 2024:1-9. [PMID: 39520726 DOI: 10.1080/10428194.2024.2426055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
ZNF384 gene rearrangements are a distinct subtype of adult B cell acute lymphoblastic leukemia (B-ALL). We screened 46 B-other ALL patients for ZNF384 fusions using fluorescent in situ hybridization (FISH) and reverse transcription-polymerase chain reaction (RT-PCR). Clinical data, treatment response, and minimal residual disease (MRD) status were analyzed. Ten (21.7%) patients were ZNF384-r positive (nine by FISH, nine by RT-PCR, eight by both). FISH showed atypical signals, including 3' signal gain and 5' signal deletion. EP300 was the main fusion partner (n = 5). TAF15::ZNF384, SYNRG::ZNF384, CREBBP::ZNF384, and TCF3::ZNF384 fusions were found in one patient each; one case's partner gene is unknown. One patient was MRD-negative at the end of the first induction, lower than in patients without ZNF384-r. ZNF384-r incidence matched B-other ALL incidence in Chinese patients. Combined FISH and RT-PCR improved detection. ALL with ZNF384-r has unique features, and lower MRD-negative response may indicate a negative impact on traditional treatments.
Collapse
Affiliation(s)
- Qinlu Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shugang Xing
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Yamada C, Okada K, Odaira K, Tokoro M, Iwamoto E, Sanada M, Noura M, Okamoto S, Yasuda T, Tsuzuki S, Kiyoi H, Hayakawa F. RGS1 and CREB5 are direct and common transcriptional targets of ZNF384-fusion proteins. Cancer Med 2024; 13:e7471. [PMID: 39015025 PMCID: PMC11252495 DOI: 10.1002/cam4.7471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND ZNF384-fusion (Z-fusion) genes were recently identified in B-cell acute lymphoblastic leukemia (B-ALL) and are frequent in Japanese adult patients. The frequency is about 20% in those with Philadelphia chromosome-negative B-ALL. ZNF384 is a transcription factor and Z-fusion proteins have increased transcriptional activity; however, the detailed mechanisms of leukemogenesis of Z-fusion proteins have yet to be clarified. METHODS We established three transfectants of cell lines expressing different types of Z-fusion proteins, and analyzed their gene expression profile (GEP) by RNA-seq. We also analyzed the GEP of clinical ALL samples using our previous RNA-seq data of 323 Japanese ALL patients. We selected upregulated genes in both Z-fusion gene-expressing transfectants and Z-fusion gene-positive ALL samples, and investigated the binding of Z-fusion proteins to regulatory regions of the candidate genes by ChIP-qPCR. RESULTS We selected six commonly upregulated genes. After the investigation by ChIP-qPCR, we finally identified CREB5 and RGS1 as direct and common target genes. RGS1 is an inhibitor of CXCL12-CXCR4 signaling that is required for the homing of hematopoietic progenitor cells to the bone marrow microenvironment and development of B cells. Consistent with this, Z-fusion gene transfectants showed impaired migration toward CXCL12. CONCLUSIONS We identified CREB5 and RGS1 as direct and common transcriptional targets of Z-fusion proteins. The present results provide novel insight into the aberrant transcriptional regulation by Z-fusion proteins.
Collapse
Affiliation(s)
- Chiharu Yamada
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Kentaro Okada
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Koya Odaira
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Mahiru Tokoro
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Eisuke Iwamoto
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Masashi Sanada
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Mina Noura
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Syuichi Okamoto
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Takahiko Yasuda
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Shinobu Tsuzuki
- Department of BiochemistryAichi Medical University School of MedicineNagakuteJapan
| | - Hitoshi Kiyoi
- Department of Hematology and OncologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
3
|
Shi ZY, Wang X, Chen WM, Li LD, Hao Y, Li JY, Sun K, Zhao XS, Jiang H, Jiang Q, Huang XJ, Qin YZ. ZNF384 fusion transcript levels for measurable residual disease monitoring in adult B-cell acute lymphoblastic leukemia. Hematol Oncol 2024; 42:e3251. [PMID: 38287528 DOI: 10.1002/hon.3251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
Zinc finger protein 384 (ZNF384) rearrangement defined a novel subtype of B-cell acute lymphoblastic leukemia (B-ALL). The prognostic significance of ZNF384 fusion transcript levels represented measurable residual disease remains to be explored. ZNF384 fusions were screened out in 57 adult B-ALL patients at diagnosis by real-time quantitative polymerase chain reaction and their transcript levels were serially monitored during treatment. The reduction of ZNF384 fusion transcript levels at the time of achieving complete remission had no significant impact on survival, whereas its ≥2.5-log reduction were significantly associated with higher relapse free survival (RFS) and overall survival (OS) rates after course 1 consolidation (p = 0.022 and = 0.0083) and course 2 consolidation (p = 0.0025 and = 0.0008). Compared with chemotherapy alone, allogeneic hematopoietic stem cell transplantation (allo-HSCT) significantly improved RFS and OS of patients with <2.5-log reduction after course 1 consolidation (p < 0.0001 and = 0.0002) and course 2 consolidation (p = 0.0003 and = 0.019), whereas exerted no significant effects in patients with ≥2.5-log reduction (all p > 0.05). ZNF384 fusion transcript levels after course 1 and course 2 consolidation strongly predict relapse and survival and may guide whether receiving allo-HSCT in adult B-ALL.
Collapse
Affiliation(s)
- Zong-Yan Shi
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Wen-Min Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ling-Di Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yue Hao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jin-Ying Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kai Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
4
|
Chiaretti S, Taherinasab A, Della Starza I, Canichella M, Ansuinelli M, De Propris MS, Messina M, Spinelli O, Santoro A, De Novi LA, Cardinali D, Schipani M, Arena V, Bassan R, Guarini A, Foà R. ZNF384 rearrangement is the most frequent genetic lesion in adult PH-negative and Ph-like-negative B-other acute lymphoblastic leukemia. Biological and clinical findings. Leuk Lymphoma 2023; 64:483-486. [PMID: 36533589 DOI: 10.1080/10428194.2022.2148217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Akram Taherinasab
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy.,Fondazione GIMEMA Onlus, Rome, Italy
| | - Martina Canichella
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Michela Ansuinelli
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Maria Stefania De Propris
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Orietta Spinelli
- Haematology and Bone Marrow Transplant Unit, ASST-Papa Giovanni XXIII, Bergamo
| | - Alessandra Santoro
- Department of Hemato Oncology, AOR "VillaSofia-Cervello", Palermo, Italy
| | - Lucia Anna De Novi
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Deborah Cardinali
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Mattia Schipani
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | | | - Renato Bassan
- Division of Hematology, Ospedale dell'Angelo, Mestre, Venezia, Italy
| | - Anna Guarini
- Department of Molecular Medicine, "Sapienza" University of Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
5
|
Meng QX, Wang KN, Li JH, Zhang H, Chen ZH, Zhou XJ, Cao XC, Wang P, Yu Y. ZNF384–ZEB1 feedback loop regulates breast cancer metastasis. Mol Med 2022; 28:111. [PMID: 36100877 PMCID: PMC9469556 DOI: 10.1186/s10020-022-00541-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Breast cancer has become the most frequently diagnosed cancer worldwide. Increasing evidence indicated that zinc finger proteins (ZNFs), the largest family of transcription factors, contribute to cancer development and progression. Although ZNF384 is overexpressed in several types of human cancer, the role of ZNF384 in breast cancer remains unknown. Therefore, our research focused on ZNF384 regulation of the malignant phenotype of breast cancer and the underlying molecular mechanisms. Methods CCK-8 and colony formation assays were used to evaluate cell proliferation. Transwell and scratch assays were used to evaluate the cell migration and invasion. Chromatin immunoprecipitation (ChIP)-qPCR and luciferase reporter assays were used to confirm the target relationship between ZNF384 and zinc finger E-box binding homeobox 1 (ZEB1). Xenografts were used to monitor the targets in vivo effects. Results We noted that ZNF384 was significantly overexpressed in breast cancer and highlighted the oncogenic mechanism of ZNF384. ZNF384 transactivated ZEB1 expression and induced an epithelial and mesenchymal-like phenotype, resulting in breast cancer metastasis. Furthermore, ZNF384 may be a target of miR-485-5p, and ZEB1 can up-regulate ZNF384 expression by repressing miR-485-5p expression. Together, we unveiled a feedback loop of ZNF384–ZEB1 in breast cancer metastasis. Conclusions The findings suggest that ZNF384 can serve as a prognostic factor and a therapeutic target for breast cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00541-1.
Collapse
|
6
|
Charakopoulos E, Diamantopoulos PT, Zervakis K, Giannakopoulou N, Psichogiou M, Viniou NA. A case report of a fulminant Aeromonas hydrophila soft tissue infection in a patient with acute lymphoblastic leukemia harboring a rare translocation. Curr Med Res Opin 2022; 38:1125-1132. [PMID: 35575163 DOI: 10.1080/03007995.2022.2078079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Aeromonads are gram-negative opportunistic bacteria, mainly found in aquatic environments. Hematologic patients are particularly at risk of Aeromonas soft tissue infections and septicemia, especially during chemotherapy-induced neutropenia. CASE DESCRIPTION A 46-year-old man was diagnosed with acute lymphoblastic leukemia characterized by the rare t(12;17)(p13;q21)/TAF15-ZNF384 aberration. On day 22 of chemotherapy, he developed febrile neutropenia followed by necrotizing fasciitis in his upper right extremity. Despite appropriate antibiotic therapy and prompt surgical intervention, he died within 36 h after the appearance of a fever. A multi-sensitive Aeromonas hydrophila was isolated from all cultural sites. DISCUSSION AND CONCLUSIONS In a previous paper we characterized the patient's aberration with cytogenetic and FISH analysis. Here, we provide details regarding the patient's rapidly progressing infection and underline the importance of maintaining high clinical suspicion of Aeromonas infections in acute leukemia. Given the unusually rapid progression of an infection caused by a rare non-resistant pathogen, and after considering data on the implication of metalloproteinase function in immune system regulation, a correlation between risk of severe infection and TAF15-ZNF384 aberrated acute lymphoblastic leukemia cannot be ruled out.
Collapse
Affiliation(s)
- Emmanouil Charakopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Greece
| | - Panagiotis T Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Greece
| | - Konstantinos Zervakis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Greece
| | - Nefeli Giannakopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Greece
| | - Mina Psichogiou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
7
|
Wang YZ, Qin YZ, Chang Y, Yuan XY, Chen WM, He LL, Hao L, Shi WH, Jiang Q, Jiang H, Huang XJ, Liu YR. Immunophenotypic characteristics of ZNF384 rearrangement compared with BCR-ABL1, KMT2A rearrangement, and other adult B-cell precursor acute lymphoblastic leukemia. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2022; 102:360-369. [PMID: 35735203 DOI: 10.1002/cyto.b.22086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/22/2022] [Accepted: 06/08/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND ZNF384 rearrangement has been recently identified as a new subtype of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, comprehensive studies clarifying immunophenotypic features and discriminating them from non-ZNF384 in adult BCP-ALL remain scarce to date. METHODS Flow cytometric assessments were retrospectively performed in 43 patients with ZNF384 rearrangement, 45 with BCR-ABL1, 29 with KMT2A rearrangement and 44 with other BCP-ALL in the analysis cohort. RESULTS CD33- and CD13-positive frequencies were significantly higher in patients with ZNF384 rearrangement than in those with non-ZNF384; however, no significant difference was observed in CD10- and CD123-positive frequencies. Analysis of antigen-positive cell proportion and median fluorescence intensity (MFI) further indicated that patients with ZNF384 rearrangement had significantly lower CD10 and higher CD33, CD13, and CD123 proportion and MFI. However, compared with KMT2A rearrangement, the CD10 expression in patients with ZNF384 rearrangement was higher, with the median percentage and MFI of 36.16 (3.63-94.79)% versus 4.53 (0.03-21.00)%, and 4.50 (0.86-32.26) versus 2.06 (0.87-4.04), respectively (p < 0.0001). Furthermore, compared with BCR-ABL1 and other BCP-ALL, ZNF384 rearrangement had significantly higher CD33 and CD13 proportion and MFI (p < 0.0001 and p < 0.05, respectively). In addition, higher CD123 proportion and MFI in ZNF384 rearrangement than those in the other three groups were reported for the first time (p < 0.01). A flow cytometry scoring system, including CD10%, CD33MFI, CD13%, and CD123MFI, was proposed and verified to predict ZNF384 rearrangement with high sensitivity and specificity, that is, 76.74% and 91.53% in the analysis and 87.50% and 91.30% in the validation cohort. CONCLUSIONS The multiparameter immunophenotypic scoring system could suggest ZNF384 rearrangement.
Collapse
Affiliation(s)
- Ya-Zhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yan Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Ying Yuan
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Wen-Min Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Ling-Ling He
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Le Hao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Wei-Hua Shi
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yan-Rong Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| |
Collapse
|
8
|
Single-cell analysis identifies dynamic gene expression networks that govern B cell development and transformation. Nat Commun 2021; 12:6843. [PMID: 34824268 PMCID: PMC8617197 DOI: 10.1038/s41467-021-27232-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Integration of external signals and B-lymphoid transcription factor activities organise B cell lineage commitment through alternating cycles of proliferation and differentiation, producing a diverse repertoire of mature B cells. We use single-cell transcriptomics/proteomics to identify differentially expressed gene networks across B cell development and correlate these networks with subtypes of B cell leukemia. Here we show unique transcriptional signatures that refine the pre-B cell expansion stages into pre-BCR-dependent and pre-BCR-independent proliferative phases. These changes correlate with reciprocal changes in expression of the transcription factor EBF1 and the RNA binding protein YBX3, that are defining features of the pre-BCR-dependent stage. Using pseudotime analysis, we further characterize the expression kinetics of different biological modalities across B cell development, including transcription factors, cytokines, chemokines, and their associated receptors. Our findings demonstrate the underlying heterogeneity of developing B cells and characterise developmental nodes linked to B cell transformation.
Collapse
|