1
|
Jin W, Jia J, Si Y, Liu J, Li H, Zhu H, Wu Z, Zuo Y, Yu L. Identification of Key lncRNAs Associated with Immune Infiltration and Prognosis in Gastric Cancer. Biochem Genet 2024:10.1007/s10528-024-10801-w. [PMID: 38658494 DOI: 10.1007/s10528-024-10801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Long non-coding RNAs (lncRNAs), as promising novel biomarkers for cancer treatment and prognosis, can function as tumor suppressors and oncogenes in the occurrence and development of many types of cancer, including gastric cancer (GC). However, little is known about the complex regulatory system of lncRNAs in GC. In this study, we systematically analyzed lncRNA and miRNA transcriptomic profiles of GC based on bioinformatics methods and experimental validation. An lncRNA-miRNA interaction network related to GC was constructed, and the nine crucial lncRNAs were identified. These 9 lncRNAs were found to be associated with the prognosis of GC patients by Cox proportional hazards regression analysis. Among them, the expression of lncRNA SNHG14 can affect the survival of GC patients as a potential prognostic marker. Moreover, it was shown that SNHG14 was involved in immune-related pathways and significantly correlated with immune cell infiltration in GC. Meanwhile, we found that SNHG14 affected immune function in many cancers, such as breast cancer and esophageal carcinoma. Such information revealed that SNHG14 may serve as a potential target for cancer immunotherapy. As well, our study could provide practical and theoretical guiding significance for clinical application of non-coding RNAs.
Collapse
Affiliation(s)
- Wen Jin
- Clinical Medical Research Center, Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Jianchao Jia
- Clinical Medical Research Center, Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Yangming Si
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Jianli Liu
- School of Water Resource and Environment Engineering, China University of Geosciences, Beijing, 100083, China
| | - Hanshuang Li
- College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Hao Zhu
- Clinical Medical Research Center, Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Zhouying Wu
- Clinical Medical Research Center, Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Yongchun Zuo
- College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
- Digital College, Inner Mongolia Intelligent Union Big Data Academy, Hohhot, 010010, China.
- Inner Mongolia International Mongolian Hospital, Hohhot, 010065, China.
| | - Lan Yu
- Clinical Medical Research Center, Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People's Hospital, Hohhot, 010010, China.
- Department of Endocrine and Metabolic Diseases, Inner Mongolia People's Hospital, Hohhot, 010010, China.
| |
Collapse
|
2
|
Huang L, Yang G, Shao Y, Sun J, Yang X, Hong H, Aikemu B, Yesseyeva G, Li S, Ding C, Fan X, Zhang S, Ma J, Zheng M. Cancer-derived exosomal lncRNA SNHG3 promotes the metastasis of colorectal cancer through hnRNPC-mediating RNA stability of β-catenin. Int J Biol Sci 2024; 20:2388-2402. [PMID: 38725844 PMCID: PMC11077369 DOI: 10.7150/ijbs.88313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Metastasis is the leading cause of death in colorectal cancer (CRC) patients. By mediating intercellular communication, exosomes exhibit considerable value in regulating tumor metastasis. Long non-coding RNAs (lncRNAs) are abundant in exosomes and participate in regulating tumor progression. However, it is poorly understood how the cancer-secreted exosomal lncRNAs affect CRC proliferation and metastasis. Here, by analyzing the public databases we identified a lncRNA SNHG3 and demonstrated that SNHG3 was delivered through CRC cells-derived exosomes to promote metastasis in CRC. Mechanistically, exosomal SNHG3 was internalized by CRC cells and afterward upregulated the expression of β-catenin by facilitating the intranuclear transport of hnRNPC. Consequently, the RNA stability of β-catenin was enhanced which led to the activation of EMT and metastasis of CRC cells. Our findings expand the oncogenic mechanisms of exosomal SNHG3 and identify it as a diagnostic marker for CRC.
Collapse
Affiliation(s)
- Ling Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hiju Hong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Batuer Aikemu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Galiya Yesseyeva
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengsheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Fan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjun Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Zhang N, Lei T, Xu T, Zou X, Wang Z. Long noncoding RNA SNHG15: A promising target in human cancers. Front Oncol 2023; 13:1108564. [PMID: 37056344 PMCID: PMC10086267 DOI: 10.3389/fonc.2023.1108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
As oncogenes or tumor suppressor genes, lncRNAs played an important role in tumorigenesis and the progression of human cancers. The lncRNA SNHG15 has recently been revealed to be dysregulated in malignant tumors, suggesting the aberrant expression of which contributes to clinical features and regulates various oncogenic processes. We have selected extensive literature focused on SNHG15 from electronic databases, including studies relevant to its clinical significance and the critical events in cancer-related processes such as cell proliferation, apoptosis, autophagy, metastasis, and drug resistance. This review summarized the current understanding of SNHG15 in cancer, mainly focusing on the pathological features, known biological functions, and underlying molecular mechanisms. Furthermore, SNHG15 has been well-documented to be an effective diagnostic and prognostic marker for tumors, offering novel therapeutic interventions in specific subsets of cancer cells.
Collapse
Affiliation(s)
- Niu Zhang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tianyao Lei
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tianwei Xu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoteng Zou
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhaoxia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Zhaoxia Wang,
| |
Collapse
|
4
|
Xie J, Ni J, Shi H, Wang K, Ma X, Li W, Peng B. LncRNA SNHG3 enhances BMI1 mRNA stability by binding and regulating c-MYC: Implications for the carcinogenic role of SNHG3 in bladder cancer. Cancer Med 2023; 12:5718-5735. [PMID: 36208024 PMCID: PMC10028137 DOI: 10.1002/cam4.5316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
The transformation of nonmuscle-invasive bladder cancer (BLCa) to muscle-invasive type and distant metastasis are the two major threats to patients after surgery. Thus, it is important to identify the key genes of BLCa cell invasion and metastasis. Long noncoding RNA (lncRNA) is a potential clinical tool for cancer diagnosis and treatment. Herein, we verified that lncRNA SNHG3 is upregulated in human BLCa specimens and is proportional to poor clinical prognosis via a combination of bioinformatic analyses and wet bench experiments. Then, we constructed SNHG3 knockdown and overexpression cell models via lentiviral packaging and CRISPR-Cas9 technique. Fluorescence in situ hybridization assay showed that SNHG3 is distributed in both the nucleus and cytoplasm of BLCa cell lines. In vitro assays including CCK-8, EdU, colony formation, wound healing, transwell, and tube formation demonstrated that SNHG3 knockdown and overexpression potently inhibited and enhanced BLCa cell proliferation, migration, invasion, and angiogenesis. In addition, IVIS imaging revealed that SNHG3 knockdown could significantly inhibit M-NSG mice xenograft tumor growth. Next, RNA sequencing, bioinformatics analyses and western blots indicated that SNHG3 could promote c-MYC expression. RNA immunoprecipitation, actinomycin D assay and western blot assays suggested that SNHG3 could also bind c-MYC protein which subsequently facilitate the stabilization of BMI1 mRNA, thus enhancing BMI1 protein level. However, SNHG3 knockdown had a slightly weaker inhibitory effect on BMI1 expression than c-MYC knockdown. Further, in vitro assays demonstrated that BMI1 knockdown could suppress the SNHG3 activation-induced tumor promoting effect in BLCa cells. Overall, this study has provided new insights into the potential implication of lncRNA SNHG3 in the pathogenesis of BLCa. Importantly, SNHG3/c-MYC/BMI1 axis may be a novel target for regulating tumor growth and metastasis in BLCa patients.
Collapse
Affiliation(s)
- Jinbo Xie
- Department of Urology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jinliang Ni
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
| | - Huajuan Shi
- Department of Urology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keyi Wang
- Department of Urology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoying Ma
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Wei Li
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bo Peng
- Department of Urology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Xiao X, Xu J, Sheng X, Wang C, Dong J, Shi X. Tobacco nicotine promotes TRAIL resistance in lung cancer through SNHG5. Exp Ther Med 2023; 25:131. [PMID: 36845946 PMCID: PMC9947578 DOI: 10.3892/etm.2023.11830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/27/2022] [Indexed: 02/12/2023] Open
Abstract
Tobacco nicotine use is carcinogenic and a well-known risk factor for lung cancer. However, whether tobacco nicotine can induce drug resistance in lung cancer is not clear. The objective of the present study was to identify the TNF-related apoptosis-inducing ligand (TRAIL) resistance of long noncoding RNAs (lncRNAs) that are differentially expressed in smokers and nonsmokers with lung cancer. The results suggested that the nicotine upregulated small nucleolar RNA host gene 5 (SNHG5) and markedly decreased the levels of cleaved caspase-3. The present study found that cytoplasm lncRNA SNHG5 overexpression was associated with TRAIL resistance in lung cancer and that SNHG5 can interact with X-linked inhibitor of apoptosis protein to promote TRAIL resistance. Therefore, nicotine promoted TRAIL resistance in lung cancer through SNHG5/X-linked inhibitor of apoptosis protein.
Collapse
Affiliation(s)
- Xin Xiao
- Department of Oncology, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, Anhui 231500, P.R. China
| | - Juan Xu
- Department of Oncology, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, Anhui 231500, P.R. China
| | - Xiaoan Sheng
- Department of Oncology, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, Anhui 231500, P.R. China
| | - Chao Wang
- Department of Oncology, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, Anhui 231500, P.R. China
| | - Juanjuan Dong
- Department of Oncology, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, Anhui 231500, P.R. China
| | - Xianfeng Shi
- Department of Oncology, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, Anhui 231500, P.R. China,Correspondence to: Professor Xianfeng Shi, Department of Oncology, Chaohu Hospital Affiliated to Anhui Medical University, 64 Chaohu North Road, Juchao, Chaohu, Anhui 231500, P.R. China
| |
Collapse
|
6
|
Liu F, Xiong QW, Wang JH, Peng WX. Roles of lncRNAs in childhood cancer: Current landscape and future perspectives. Front Oncol 2023; 13:1060107. [PMID: 36923440 PMCID: PMC10008945 DOI: 10.3389/fonc.2023.1060107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
According to World Health Organization (WHO), cancer is the leading cause of death for children and adolescents. Leukemias, brain cancers, lymphomas and solid tumors, such as neuroblastoma, ostesarcoma and Wilms tumors are the most common types of childhood cancers. Approximately 400,000 children and adolescents between the ages of 0 and 19 are diagnosed with cancer each year worldwide. The cancer incidence rates have been rising for the past few decades. Generally, the prognosis of childhood cancers is favorable, but the survival rate for many unresectable or recurring cancers is substantially worse. Although random genetic mutations, persistent infections, and environmental factors may serve as contributing factors for many pediatric malignancies, the underlying mechanisms are yet unknown. Long non-coding RNAs (lncRNAs) are a group of transcripts with longer than 200 nucleotides that lack the coding capacity. However, increasing evidence indicates that lncRNAs play vital regulatory roles in cancer initiation and development in both adults and children. In particular, many lncRNAs are stable in cancer patients' body fluids such as blood and urine, suggesting that they could be used as novel biomarkers. In support of this notion, lncRNAs have been identified in liquid biopsy samples from pediatric cancer patients. In this review, we look at the regulatory functions and underlying processes of lncRNAs in the initiation and progression of children cancer and discuss the potential of lncRNAs as biomarkers for early detection. We hope that this article will help researchers explore lncRNA functions and clinical applications in pediatric cancers.
Collapse
Affiliation(s)
- Fei Liu
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian-Wen Xiong
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.,Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin-Hu Wang
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Wan-Xin Peng
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.,Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Luo P, Du J, Li Y, Ma J, Shi W. Association between small nucleolar RNA host gene expression and survival outcome of colorectal cancer patients: A meta-analysis based on PRISMA and bioinformatics analysis. Front Oncol 2023; 13:1094131. [PMID: 36895488 PMCID: PMC9990627 DOI: 10.3389/fonc.2023.1094131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Growing evidence shows that long non-coding RNA small nucleolar RNA host genes (lncRNA SNHGs) enact an pivotal regulatory roles in the shorter survival outcome of colorectal cancer (CRC). However, no research has systematically evaluated the correlation among lncRNA SNHGs expression and survival outcome of CRC. This research indented to screen whether exist potential prognostic effect of lncRNA SNHGs in CRC patientss using comprehensive review and meta-analysis. Methods Systematic searches were performed from the six relevant databases from inception to October 20, 2022. The quality of published papers was evaluated in details. We pooled the hazard ratios (HR) with 95% confidence interval (CI) through direct or indirect collection of effect sizes, and odds ratios (OR) with 95% CI by collecting effect sizes within articles. Detailed downstream signaling pathways of lncRNA SNHGs were summarized in detail. Results 25 eligible publications including 2,342 patients were finally included to appraise the association of lncRNA SNHGs with prognosis of CRC. Elevated lncRNA SNHGs expression was revealed in colorectal tumor tissues. High lncSNHG expression means bad survival prognosis in CRC patients (HR=1.635, 95% CI: 1.405-1.864, P<0.001). Additionally, high lncRNA SNHGs expression was inclined to later TNM stage (OR=1.635, 95% CI: 1.405-1.864, P<0.001), distant lymph node invasion, distant organ metastasis, larger tumor diameter and poor pathological grade. Begg's funnel plot test using the Stata 12.0 software suggested that no significant heterogeneity was found. Conclusion Elevated lncRNA SNHGs expression was revealed to be positively correlated to discontented CRC clinical outcome and lncRNA SNHG may act as a potential clinical prognostic index for CRC patients.
Collapse
Affiliation(s)
- Pei Luo
- Department of Gastroenterology, Qian Xi Nan Buyi and Miao Autonomous Prefecture People's Hospital, Xingyi, Guizhou, China
| | - Jie Du
- Colorectal Surgery Department, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yinan Li
- Colorectal Surgery Department, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jilong Ma
- Colorectal Surgery Department, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenjun Shi
- Colorectal Surgery Department, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
8
|
Fan Y, Gao Z, Xu J, Wang H, Guo Q, Xue H, Zhao R, Guo X, Li G. Identification and validation of SNHG gene signature to predict malignant behaviors and therapeutic responses in glioblastoma. Front Immunol 2022; 13:986615. [PMID: 36159816 PMCID: PMC9493242 DOI: 10.3389/fimmu.2022.986615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) patients exhibit high mortality and recurrence rates despite multimodal therapy. Small nucleolar RNA host genes (SNHGs) are a group of long noncoding RNAs that perform a wide range of biological functions. We aimed to reveal the role of SNHGs in GBM subtypes, cell infiltration into the tumor microenvironment (TME), and stemness characteristics. SNHG interaction patterns were determined based on 25 SNHGs and systematically correlated with GBM subtypes, TME and stemness characteristics. The SNHG interaction score (SNHGscore) model was generated to quantify SNHG interaction patterns. The high SNHGscore group was characterized by a poor prognosis, the mesenchymal (MES) subtype, the infiltration of suppressive immune cells and a differentiated phenotype. Further analysis indicated that high SNHGscore was associated with a weaker response to anti-PD-1/L1 immunotherapy. Tumor cells with high SNHG scores were more sensitive to drugs targeting the EGFR and ERK-MAPK signaling pathways. Finally, we assessed SNHG interaction patterns in multiple cancers to verify their universality. This is a novel and comprehensive study that provides targeted therapeutic strategies based on SNHG interactions. Our work highlights the crosstalk and potential clinical utility of SNHG interactions in cancer therapy.
Collapse
Affiliation(s)
- Yang Fan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Jianye Xu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Huizhi Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Qindong Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Xing Guo, ; Gang Li,
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Xing Guo, ; Gang Li,
| |
Collapse
|
9
|
Malakoti F, Alemi F, Yeganeh SJ, Hosseini F, Shabestani N, Samemaleki S, Maleki M, Daneshvar SF, Montazer M, Yousefi B. Long noncoding RNA SNHG7-miRNA-mRNA axes crosstalk with oncogenic signaling pathways in human cancers. Chem Biol Drug Des 2022; 101:1151-1161. [PMID: 35993390 DOI: 10.1111/cbdd.14118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/19/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
LncRNAs and miRNAs are the two most important non-coding RNAs, which have been identified to be associated with cancer progression or prevention. The dysregulation of lncRNAs conducts tumorigenesis and metastasis in different ways. One of the mechanisms is that lncRNAs interact with miRNAs to regulate distinct cellular and genomic processes and cancer progression. LncRNA SNHG7 as an oncogene sponges miRNAs and develops lncRNA-miRNA-mRNA axes, leading to the regulation of several signaling pathways such as Wnt/β-Catenin, PI3K/AKT/mTOR, SIRT1, and Snail-EMT. Therefore, in this article, after a brief overview of lncRNA SNHG7-miRNA-mRNA axes' contribution to cancer development, we will discuss the role of lncRNA SNHG7 in the genes expression and signaling pathways related to cancers development via acting as a ceRNA.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Jafari Yeganeh
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Foroogh Hosseini
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Shabestani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Samemaleki
- Department of Immunology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Fathi Daneshvar
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Montazer
- Department of Thorax Surgery, Faculty of Medicine, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Integrative Analysis and Experimental Validation Indicated That SNHG17 Is a Prognostic Marker in Prostate Cancer and a Modulator of the Tumor Microenvironment via a Competitive Endogenous RNA Regulatory Network. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1747604. [PMID: 35864871 PMCID: PMC9296331 DOI: 10.1155/2022/1747604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022]
Abstract
The incidence of prostate cancer (PC) is growing rapidly worldwide, and studies uncovering the molecular mechanisms driving the progression and modulating the immune infiltration and antitumor immunity of PC are urgently needed. The long noncoding RNA SNHG family has been recognized as a prognostic marker in cancers and contributes to the progression of multiple cancers, including PC. In this study, we aimed to clarify the prognostic values and underlying mechanisms of SNHGs in promoting the progression and modulating the tumor microenvironment of PC through data mining based on The Cancer Genome Atlas (TCGA) database. We identified that within the SNHG family, SNHG17 was most correlated with the overall survival of PC patients and could act as an independent predictor. Moreover, we constructed a competitive endogenous RNA (ceRNA) network by which SNHG17 promotes progression and potentially inhibits the immune infiltration and immune response of prostate cancer. By interacting with miR-23a-3p/23b-3p/23c, SNHG17 upregulates the expression of UBE2M and OTUB1, which have been demonstrated to play critical roles in the tumorigenesis of human cancers, more importantly promoting cancer cell immunosuppression and resistance to cytotoxic stimulation. Finally, we examined the correlation between SNHG17 expression and the clinical progression of PC patients based on our cohort of 52 PC patients. We also verified the SNHG17/miR-23a/OTUB1 axis in RV-1 and PC-3 cells by dual luciferase and RIP assays, and we further identified that SNHG17 promoted cellular invasive capacity by modulating OTUB1. In summary, the current study conducted a ceRNA-based SNHG17-UBE2M/OTUB1 axis and indicated that SNHG17 might be a novel prognostic factor associated with the progression, immunosuppression, and cytotoxic resistance of PC.
Collapse
|
11
|
Tan W, Yuan Y, Huang H, Ma J, Li Y, Gou Y, Wu H, Hu Z. Comprehensive analysis of autophagy related long non-coding RNAs in prognosis, immunity, and treatment of muscular invasive bladder cancer. Sci Rep 2022; 12:11242. [PMID: 35787635 PMCID: PMC9253343 DOI: 10.1038/s41598-022-13952-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/31/2022] [Indexed: 02/08/2023] Open
Abstract
To predict disease outcome in muscle-invasive bladder cancer (MIBC), we constructed a prognostic autophagy-related (PAR) lncRNA signature. Comprehensive bioinformatics analyses were performed using data from TCGA and GTEx databases. Univariate Cox, and least absolute shrinkage and selection operator regression analyses were also performed, based on differentially expressed genes, to identify PAR-related lncRNAs to establish the signature. Furthermore, the Kaplan–Meier OS curve and receiver operating characteristic curve analyses were performed and a nomogram was constructed, all of which together confirmed the strong predictive ability of the constructed signature. Patients with MIBC were then divided into high- and low-risk groups. Gene enrichment and immune infiltration analyses revealed the potential mechanisms in MIBC. We also further evaluated the signature of molecules related to immune checkpoints and the sensitivity toward chemotherapeutic agents and antitumor-targeted drugs to find better treatment prescriptions. We identified a number of PAR-related lncRNA signatures, including HCP5, AC024060.1, NEAT1, AC105942.1, XIST, MAFG-DT, and NR2F1-AS1, which could be valuable prognostic tools to develop more efficient, individualized drug therapies for MIBC patients.
Collapse
Affiliation(s)
- Wei Tan
- Department of Urology Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ye Yuan
- Department of Urology Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Huang
- Department of Urology Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhao Ma
- Department of Urology Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yadong Li
- Department of Urology Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanqing Gou
- Department of Urology Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Wu
- Department of Urology Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Zili Hu
- Department of Urology Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Bian Z, Zhou M, Cui K, Yang F, Cao Y, Sun S, Liu B, Gong L, Li J, Wang X, Li C, Yao S, Yin Y, Huang S, Fei B, Huang Z. SNHG17 promotes colorectal tumorigenesis and metastasis via regulating Trim23-PES1 axis and miR-339-5p-FOSL2-SNHG17 positive feedback loop. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:360. [PMID: 34782005 PMCID: PMC8591805 DOI: 10.1186/s13046-021-02162-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/30/2021] [Indexed: 12/22/2022]
Abstract
Background Small nucleolar RNA host gene (SNHG) long noncoding RNAs (lncRNAs) are frequently dysregulated in human cancers and involved in tumorigenesis and progression. SNHG17 has been reported as a candidate oncogene in several cancer types, however, its regulatory role in colorectal cancer (CRC) is unclear. Methods SNHG17 expression in multiple CRC cohorts was assessed by RT-qPCR or bioinformatic analyses. Cell viability was evaluated using Cell Counting Kit-8 (CCK-8) and colony formation assays. Cell mobility and invasiveness were assessed by Transwell assays. Tumor xenograft and metastasis models were applied to confirm the effects of SNHG17 on CRC tumorigenesis and metastasis in vivo. Immunohistochemistry staining was used to measure protein expression in cancer tissues. RNA pull-down, RNA immunoprecipitation, chromatin immunoprecipitation, and dual luciferase assays were used to investigate the molecular mechanism of SNHG17 in CRC. Results Using multiple cohorts, we confirmed that SNHG17 is aberrantly upregulated in CRC and correlated with poor survival. In vitro and in vivo functional assays indicated that SNHG17 facilitates CRC proliferation and metastasis. SNHG17 impedes PES1 degradation by inhibiting Trim23-mediated ubiquitination of PES1. SNHG17 upregulates FOSL2 by sponging miR-339-5p, and FOSL2 transcription activates SNHG17 expression, uncovering a SNHG17-miR-339-5p-FOSL2-SNHG17 positive feedback loop. Conclusions We identified SNHG17 as an oncogenic lncRNA in CRC and identified abnormal upregulation of SNHG17 as a prognostic risk factor for CRC. Our mechanistic investigations demonstrated, for the first time, that SNHG17 promotes tumor growth and metastasis through two different regulatory mechanisms, SNHG17-Trim23-PES1 axis and SNHG17-miR-339-5p-FOSL2-SNHG17 positive feedback loop, which may be exploited for CRC therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02162-8.
Collapse
Affiliation(s)
- Zehua Bian
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Mingyue Zhou
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Fan Yang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Yulin Cao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Shengbai Sun
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Bingxin Liu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Liang Gong
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jiuming Li
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xue Wang
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chaoqun Li
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Yuan Yin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Bojian Fei
- Department of Surgical Oncology, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Wuxi, 214062, Jiangsu, China.
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China. .,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|