1
|
Zheng F, Yin P, Yang L, Wang Y, Hao W, Hao Q, Chen X, Hong N. MRI-Based Machine Learning Fusion Models to Distinguish Encephalitis and Gliomas. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:653-665. [PMID: 38343248 PMCID: PMC11031538 DOI: 10.1007/s10278-023-00957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 04/20/2024]
Abstract
This paper aims to compare the performance of the classical machine learning (CML) model and the deep learning (DL) model, and to assess the effectiveness of utilizing fusion radiomics from both CML and DL in distinguishing encephalitis from glioma in atypical cases. We analysed the axial FLAIR images of preoperative MRI in 116 patients pathologically confirmed as gliomas and clinically diagnosed with encephalitis. The 3 CML models (logistic regression (LR), support vector machine (SVM) and multi-layer perceptron (MLP)), 3 DL models (DenseNet 121, ResNet 50 and ResNet 18) and a deep learning radiomic (DLR) model were established, respectively. The area under the receiver operating curve (AUC) and sensitivity, specificity, accuracy, negative predictive value (NPV) and positive predictive value (PPV) were calculated for the training and validation sets. In addition, a deep learning radiomic nomogram (DLRN) and a web calculator were designed as a tool to aid clinical decision-making. The best DL model (ResNet50) consistently outperformed the best CML model (LR). The DLR model had the best predictive performance, with AUC, sensitivity, specificity, accuracy, NPV and PPV of 0.879, 0.929, 0.800, 0.875, 0.867 and 0.889 in the validation sets, respectively. Calibration curve of DLR model shows good agreement between prediction and observation, and the decision curve analysis (DCA) indicated that the DLR model had higher overall net benefit than the other two models (ResNet50 and LR). Meanwhile, the DLRN and web calculator can provide dynamic assessments. Machine learning (ML) models have the potential to non-invasively differentiate between encephalitis and glioma in atypical cases. Furthermore, combining DL and CML techniques could enhance the performance of the ML models.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Radiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, People's Republic of China
| | - Ping Yin
- Department of Radiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, People's Republic of China
| | - Li Yang
- Imaging Department, Shanxi Province, Shanxi Provincial People's Hospital, Shanxi Medical University, No. 359 Heping North Road, Jiancaoping District, Taiyuan, People's Republic of China
| | - Yujian Wang
- Department of Radiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, People's Republic of China
| | - Wenhan Hao
- Department of Radiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, People's Republic of China
| | - Qi Hao
- Department of Radiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, People's Republic of China
| | - Xuzhu Chen
- Department of Radiology, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, People's Republic of China.
| | - Nan Hong
- Department of Radiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Zhao K, Gao A, Gao E, Qi J, Chen T, Zhao G, Zhao G, Wang P, Wang W, Bai J, Zhang Y, Zhang H, Yang G, Ma X, Cheng J. Multiple diffusion metrics in differentiating solid glioma from brain inflammation. Front Neurosci 2024; 17:1320296. [PMID: 38352939 PMCID: PMC10861663 DOI: 10.3389/fnins.2023.1320296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024] Open
Abstract
Background and purpose The differential diagnosis between solid glioma and brain inflammation is necessary but sometimes difficult. We assessed the effectiveness of multiple diffusion metrics of diffusion-weighted imaging (DWI) in differentiating solid glioma from brain inflammation and compared the diagnostic performance of different DWI models. Materials and methods Participants diagnosed with either glioma or brain inflammation with a solid lesion on MRI were enrolled in this prospective study from May 2016 to April 2023. Diffusion-weighted imaging was performed using a spin-echo echo-planar imaging sequence with five b values (500, 1,000, 1,500, 2000, and 2,500 s/mm2) in 30 directions for each b value, and one b value of 0 was included. The mean values of multiple diffusion metrics based on diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), mean apparent propagator (MAP), and neurite orientation dispersion and density imaging (NODDI) in the abnormal signal area were calculated. Comparisons between glioma and inflammation were performed. The area under the curve (AUC) of the receiver operating characteristic curve (ROC) of diffusion metrics were calculated. Results 57 patients (39 patients with glioma and 18 patients with inflammation) were finally included. MAP model, with its metric non-Gaussianity (NG), shows the greatest diagnostic performance (AUC = 0.879) for differentiation of inflammation and glioma with atypical MRI manifestation. The AUC of DKI model, with its metric mean kurtosis (MK) are comparable to NG (AUC = 0.855), followed by NODDI model with intracellular volume fraction (ICVF) (AUC = 0.825). The lowest value was obtained in DTI with mean diffusivity (MD) (AUC = 0.758). Conclusion Multiple diffusion metrics can be used in differentiation of inflammation and solid glioma. Non-Gaussianity (NG) from mean apparent propagator (MAP) model shows the greatest diagnostic performance for differentiation of inflammation and glioma.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ankang Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Eryuan Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinbo Qi
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ting Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guohua Zhao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gaoyang Zhao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peipei Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Bai
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiting Zhang
- MR Research Collaboration, Siemens Healthineers Ltd., Wuhan, China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Xiaoyue Ma
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Hagiwara A, Fujita S, Kurokawa R, Andica C, Kamagata K, Aoki S. Multiparametric MRI: From Simultaneous Rapid Acquisition Methods and Analysis Techniques Using Scoring, Machine Learning, Radiomics, and Deep Learning to the Generation of Novel Metrics. Invest Radiol 2023; 58:548-560. [PMID: 36822661 PMCID: PMC10332659 DOI: 10.1097/rli.0000000000000962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Indexed: 02/25/2023]
Abstract
ABSTRACT With the recent advancements in rapid imaging methods, higher numbers of contrasts and quantitative parameters can be acquired in less and less time. Some acquisition models simultaneously obtain multiparametric images and quantitative maps to reduce scan times and avoid potential issues associated with the registration of different images. Multiparametric magnetic resonance imaging (MRI) has the potential to provide complementary information on a target lesion and thus overcome the limitations of individual techniques. In this review, we introduce methods to acquire multiparametric MRI data in a clinically feasible scan time with a particular focus on simultaneous acquisition techniques, and we discuss how multiparametric MRI data can be analyzed as a whole rather than each parameter separately. Such data analysis approaches include clinical scoring systems, machine learning, radiomics, and deep learning. Other techniques combine multiple images to create new quantitative maps associated with meaningful aspects of human biology. They include the magnetic resonance g-ratio, the inner to the outer diameter of a nerve fiber, and the aerobic glycolytic index, which captures the metabolic status of tumor tissues.
Collapse
Affiliation(s)
- Akifumi Hagiwara
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shohei Fujita
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Christina Andica
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Zuo Z, Liu W, Zeng Y, Fan X, Li L, Chen J, Zhou X, Jiang Y, Yang X, Feng Y, Lu Y. Multiparametric magnetic resonance imaging-derived deep learning network to determine ferroptosis-related gene signatures in gliomas. Front Neurosci 2022; 16:1082867. [PMID: 36605558 PMCID: PMC9808079 DOI: 10.3389/fnins.2022.1082867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Ferroptosis-related gene (FRG) signature is important for assessing novel therapeutic approaches and prognosis in glioma. We trained a deep learning network for determining FRG signatures using multiparametric magnetic resonance imaging (MRI). Methods FRGs of patients with glioma were acquired from public databases. FRG-related risk score stratifying prognosis was developed from The Cancer Genome Atlas (TCGA) and validated using the Chinese Glioma Genome Atlas. Multiparametric MRI-derived glioma images and the corresponding genomic information were obtained for 122 cases from TCGA and The Cancer Imaging Archive. The deep learning network was trained using 3D-Resnet, and threefold cross-validation was performed to evaluate the predictive performance. Results The FRG-related risk score was associated with poor clinicopathological features and had a high predictive value for glioma prognosis. Based on the FRG-related risk score, patients with glioma were successfully classified into two subgroups (28 and 94 in the high- and low-risk groups, respectively). The deep learning networks TC (enhancing tumor and non-enhancing portion of the tumor core) mask achieved an average cross-validation accuracy of 0.842 and an average AUC of 0.781, while the deep learning networks WT (whole tumor and peritumoral edema) mask achieved an average cross-validation accuracy of 0.825 and an average AUC of 0.781. Discussion Our findings indicate that FRG signature is a prognostic indicator of glioma. In addition, we developed a deep learning network that has high classification accuracy in automatically determining FRG signatures, which may be an important step toward the clinical translation of novel therapeutic approaches and prognosis of glioma.
Collapse
Affiliation(s)
- Zhichao Zuo
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Wen Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Zeng
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Xiaohong Fan
- The School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan, China
| | - Li Li
- Department of Radiology, Hunan Children’s Hospital, University of South China, Changsha, Hunan, China
| | - Jing Chen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao Zhou
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Yihong Jiang
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Xiuqi Yang
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Yujie Feng
- The School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan, China,*Correspondence: Yujie Feng,
| | - Yixin Lu
- Medical Imaging Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China,Yixin Lu,
| |
Collapse
|
5
|
Liao H, Yang J, Li Y, Liang H, Ye J, Liu Y. One 3D VOI-based deep learning radiomics strategy, clinical model and radiologists for predicting lymph node metastases in pancreatic ductal adenocarcinoma based on multiphasic contrast-enhanced computer tomography. Front Oncol 2022; 12:990156. [PMID: 36158647 PMCID: PMC9500296 DOI: 10.3389/fonc.2022.990156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose We designed to construct one 3D VOI-based deep learning radiomics strategy for identifying lymph node metastases (LNM) in pancreatic ductal adenocarcinoma on the basis of multiphasic contrast-enhanced computer tomography and to assist clinical decision-making. Methods This retrospective research enrolled 139 PDAC patients undergoing pre-operative arterial phase and venous phase scanning examination between 2015 and 2021. A primary group (training group and validation group) and an independent test group were divided. The DLR strategy included three sections. (1) Residual network three dimensional-18 (Resnet 3D-18) architecture was constructed for deep learning feature extraction. (2) Least absolute shrinkage and selection operator model was used for feature selection. (3) Fully connected network served as the classifier. The DLR strategy was applied for constructing different 3D CNN models using 5-fold cross-validation. Radiomics scores (Rad score) were calculated for distinguishing the statistical difference between negative and positive lymph nodes. A clinical model was constructed by combining significantly different clinical variables using univariate and multivariable logistic regression. The manifestation of two radiologists was detected for comparing with computer-developed models. Receiver operating characteristic curves, the area under the curve, accuracy, precision, recall, and F1 score were used for evaluating model performance. Results A total of 45, 49, and 59 deep learning features were selected via LASSO model. No matter in which 3D CNN model, Rad score demonstrated the deep learning features were significantly different between non-LNM and LNM groups. The AP+VP DLR model yielded the best performance in predicting status of lymph node in PDAC with an AUC of 0.995 (95% CI:0.989-1.000) in training group; an AUC of 0.940 (95% CI:0.910-0.971) in validation group; and an AUC of 0.949 (95% CI:0.914-0.984) in test group. The clinical model enrolled the histological grade, CA19-9 level and CT-reported tumor size. The AP+VP DLR model outperformed AP DLR model, VP DLR model, clinical model, and two radiologists. Conclusions The AP+VP DLR model based on Resnet 3D-18 demonstrated excellent ability for identifying LNM in PDAC, which could act as a non-invasive and accurate guide for clinical therapeutic strategies. This 3D CNN model combined with 3D tumor segmentation technology is labor-saving, promising, and effective.
Collapse
Affiliation(s)
- Hongfan Liao
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Junjun Yang
- Key Laboratory of Optoelectronic Technology and Systems of the Ministry of Education, Chongqing University, Chongqing, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongwei Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junyong Ye
- Key Laboratory of Optoelectronic Technology and Systems of the Ministry of Education, Chongqing University, Chongqing, China
| | - Yanbing Liu
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
- *Correspondence: Yanbing Liu,
| |
Collapse
|
6
|
Liao H, Li Y, Yang Y, Liu H, Zhang J, Liang H, Yan G, Liu Y. Comparison of Multiple Radiomics Models for Identifying Histological Grade of Pancreatic Ductal Adenocarcinoma Preoperatively Based on Multiphasic Contrast-Enhanced Computed Tomography: A Two-Center Study in Southwest China. Diagnostics (Basel) 2022; 12:diagnostics12081915. [PMID: 36010267 PMCID: PMC9406915 DOI: 10.3390/diagnostics12081915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/06/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background: We designed and validated the value of multiple radiomics models for diagnosing histological grade of pancreatic ductal adenocarcinoma (PDAC), holding a promise of assisting in precision medicine and providing clinical therapeutic strategies. Methods: 198 PDAC patients receiving surgical resection and pathological confirmation were enrolled and classified as 117 low-grade PDAC and 81 high-grade PDAC group. An external validation group was used to assess models’ performance. Available radiomics features were selected using GBDT algorithm on the basis of the arterial and venous phases, respectively. Five different machine learning models were built including k-nearest neighbour, logistic regression, naive bayes model, support vector machine, and random forest using ten times tenfold cross-validation. Multivariable logistic regression analysis was applied to establish clinical model and combined model. The models’ performance was assessed according to its predictive performance, calibration curves, and decision curves. A nomogram was established for visualization. Survival analysis was conducted for stratifying the overall survival prior to treatment. Results: In the training group, the RF model demonstrated the optimal predictive ability and robustness with an AUC of 0.943; the SVM model achieved the secondary performance, followed by Bayes model. In the external validation group, these three models (Bayes, RF, SVM) also achieved the top three predictive ability. A clinical model was built by selected clinical features with an AUC of 0.728, and combined model was established by an RF model and a clinical model with an AUC of 0.961. The log-rank test revealed that the low-grade group survived longer than the high-grade group. Conclusions: The multiphasic CECT radiomics models offered an accurate and noninvasive perspective to differentiate histological grade in PDAC and advantages of machine learning models including RF, SVM and Bayes were more remarkable.
Collapse
Affiliation(s)
- Hongfan Liao
- College of Medical Informatics of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yaying Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Huan Liu
- GE Healthcare, Shanghai 201203, China
| | - Jiao Zhang
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Hongwei Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Gaowu Yan
- Department of Radiology, Suining Central Hospital, Suining 429000, China
| | - Yanbing Liu
- College of Medical Informatics of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
- Correspondence:
| |
Collapse
|
7
|
Xiang Y, Dong X, Zeng C, Liu J, Liu H, Hu X, Feng J, Du S, Wang J, Han Y, Luo Q, Chen S, Li Y. Clinical Variables, Deep Learning and Radiomics Features Help Predict the Prognosis of Adult Anti-N-methyl-D-aspartate Receptor Encephalitis Early: A Two-Center Study in Southwest China. Front Immunol 2022; 13:913703. [PMID: 35720336 PMCID: PMC9199424 DOI: 10.3389/fimmu.2022.913703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To develop a fusion model combining clinical variables, deep learning (DL), and radiomics features to predict the functional outcomes early in patients with adult anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in Southwest China. Methods From January 2012, a two-center study of anti-NMDAR encephalitis was initiated to collect clinical and MRI data from acute patients in Southwest China. Two experienced neurologists independently assessed the patients’ prognosis at 24 moths based on the modified Rankin Scale (mRS) (good outcome defined as mRS 0–2; bad outcome defined as mRS 3-6). Risk factors influencing the prognosis of patients with acute anti-NMDAR encephalitis were investigated using clinical data. Five DL and radiomics models trained with four single or combined four MRI sequences (T1-weighted imaging, T2-weighted imaging, fluid-attenuated inversion recovery imaging and diffusion weighted imaging) and a clinical model were developed to predict the prognosis of anti-NMDAR encephalitis. A fusion model combing a clinical model and two machine learning-based models was built. The performances of the fusion model, clinical model, DL-based models and radiomics-based models were compared using the area under the receiver operating characteristic curve (AUC) and accuracy and then assessed by paired t-tests (P < 0.05 was considered significant). Results The fusion model achieved the significantly greatest predictive performance in the internal test dataset with an AUC of 0.963 [95% CI: (0.874-0.999)], and also significantly exhibited an equally good performance in the external validation dataset, with an AUC of 0.927 [95% CI: (0.688-0.975)]. The radiomics_combined model (AUC: 0.889; accuracy: 0.857) provided significantly superior predictive performance than the DL_combined (AUC: 0.845; accuracy: 0.857) and clinical models (AUC: 0.840; accuracy: 0.905), whereas the clinical model showed significantly higher accuracy. Compared with all single-sequence models, the DL_combined model and the radiomics_combined model had significantly greater AUCs and accuracies. Conclusions The fusion model combining clinical variables and machine learning-based models may have early predictive value for poor outcomes associated with anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Yayun Xiang
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoxuan Dong
- College of Computer and Information Science, Chongqing, China
| | - Chun Zeng
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Junhang Liu
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hanjing Liu
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaofei Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Silin Du
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jingjie Wang
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yongliang Han
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qi Luo
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shanxiong Chen
- College of Computer and Information Science, Chongqing, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Zhang W, Peng J, Zhao S, Wu W, Yang J, Ye J, Xu S. Deep learning combined with radiomics for the classification of enlarged cervical lymph nodes. J Cancer Res Clin Oncol 2022; 148:2773-2780. [PMID: 35562596 DOI: 10.1007/s00432-022-04047-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/27/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE To investigate the application of deep learning combined with traditional radiomics methods for classifying enlarged cervical lymph nodes. METHODS The clinical and computed tomography (CT) imaging data of 276 patients with enlarged cervical lymph nodes (150 with lymph-node metastasis, 65 with lymphoma, and 61 with benign lymphadenopathy) who were treated at the hospital from January 2015 to January 2021 were retrospectively analysed. The patients were randomly divided into a training group and a test group at a ratio of 8:2. The radiomics features were extracted using one-by-one convolution and neural network activation, filtered with the least absolute shrinkage and selection operator (LASSO) model, and used to construct a discrimination model with PyTorch. Then, the performance of the model was compared with the radiologists' diagnostic performance. The neural network model was evaluated using the area under the receiver-operator characteristic curve (AUC), and the accuracy, sensitivity, and specificity were analysed. RESULTS A total of 102 features, comprising five traditional radiomic features and 97 deep learning features, were selected with LASSO and used to construct a discrimination model, which achieved a total accuracy of 87.50%. The AUC value, specificity, and sensitivity were, respectively, 0.92, 92.30%, and 90.00% for metastatic lymph nodes, 0.87, 95.45%, and 83.33% for benign lymphadenopathy, and 0.88, 90.47%, and 85.71% for lymphoma. The accuracies of the radiologists' diagnoses were 62.68% and 62.68%. The diagnostic performance of the model was significantly different from that of the radiologists (p < 0.05). CONCLUSION CT-based deep learning combined with the traditional radiomics methods has a high diagnostic value for the classification of cervical enlarged lymph nodes.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jian Peng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shan Zhao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenli Wu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Junjun Yang
- Key Laboratory of Optoelectronic Technology, The Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Junyong Ye
- Key Laboratory of Optoelectronic Technology, The Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Shengsheng Xu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
9
|
Qin C, Hu W, Wang X, Ma X. Application of Artificial Intelligence in Diagnosis of Craniopharyngioma. Front Neurol 2022; 12:752119. [PMID: 35069406 PMCID: PMC8770750 DOI: 10.3389/fneur.2021.752119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
Craniopharyngioma is a congenital brain tumor with clinical characteristics of hypothalamic-pituitary dysfunction, increased intracranial pressure, and visual field disorder, among other injuries. Its clinical diagnosis mainly depends on radiological examinations (such as Computed Tomography, Magnetic Resonance Imaging). However, assessing numerous radiological images manually is a challenging task, and the experience of doctors has a great influence on the diagnosis result. The development of artificial intelligence has brought about a great transformation in the clinical diagnosis of craniopharyngioma. This study reviewed the application of artificial intelligence technology in the clinical diagnosis of craniopharyngioma from the aspects of differential classification, prediction of tissue invasion and gene mutation, prognosis prediction, and so on. Based on the reviews, the technical route of intelligent diagnosis based on the traditional machine learning model and deep learning model were further proposed. Additionally, in terms of the limitations and possibilities of the development of artificial intelligence in craniopharyngioma diagnosis, this study discussed the attentions required in future research, including few-shot learning, imbalanced data set, semi-supervised models, and multi-omics fusion.
Collapse
Affiliation(s)
- Caijie Qin
- Institute of Information Engineering, Sanming University, Sanming, China
| | - Wenxing Hu
- University of New South Wales, Sydney, NSW, Australia
| | - Xinsheng Wang
- School of Information Science and Engineering, Harbin Institute of Technology at Weihai, Weihai, China
| | - Xibo Ma
- CBSR & NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Xiang Y, Zeng C, Liu B, Tan W, Wu J, Hu X, Han Y, Luo Q, Gong J, Liu J, Li Y. Deep Learning-Enabled Identification of Autoimmune Encephalitis on 3D Multi-Sequence MRI. J Magn Reson Imaging 2021; 55:1082-1092. [PMID: 34478565 DOI: 10.1002/jmri.27909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Autoimmune encephalitis (AE) is a noninfectious emergency with severe clinical attacks. It is difficult for the earlier diagnosis of acute AE due to the lack of antibody detection resources. PURPOSE To construct a deep learning (DL) algorithm using multi-sequence magnetic resonance imaging (MRI) for the identification of acute AE. STUDY TYPE Retrospective. POPULATION One hundred and sixty AE patients (90 women; median age 36), 177 herpes simplex virus encephalitis (HSVE) (89 women; median age 39), and 184 healthy controls (HC) (95 women; median age 39) were included. Fifty-two patients from another site were enrolled for external validation. FIELD STRENGTH/SEQUENCE 3.0 T; fast spin-echo (T1 WI, T2 WI, fluid attenuated inversion recovery imaging) and spin-echo echo-planar diffusion weighted imaging. ASSESSMENT Five DL models based on individual or combined four MRI sequences to classify the datasets as AE, HSVE, or HC. Reader experiment was further carried out by radiologists. STATISTICAL TESTS The discriminative performance of different models was assessed using the area under the receiver operating characteristic curve (AUC). The optimal threshold cut-off was identified when sensitivity and specificity were maximized (sensitivity + specificity - 1) in the validation set. Classification performance using confusion matrices was reported to evaluate the diagnostic value of the models and the radiologists' assessments before being assessed by the paired t-test (P < 0.05 was considered significant). RESULTS In the internal test set, the fusion model achieved the significantly greatest diagnostic performance than single-sequence DL models with AUCs of 0.828, 0.884, and 0.899 for AE, HSVE, and HC, respectively. The model demonstrated a consistently high performance in the external validation set with AUCs of 0.831 (AE), 0.882 (HSVE), and 0.892 (HC). The fusion model also demonstrated significantly higher performance than all radiologists in identifying AE (accuracy between the fuse model vs. average radiologist: 83% vs. 72%). DATA CONCLUSION The proposed DL algorithm derived from multi-sequence MRI provided desirable identification and classification of acute AE. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yayun Xiang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chun Zeng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | - Xiaofei Hu
- Department of Radiology, The Southwest Hospital of AMU, Chongqing, China
| | - Yongliang Han
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junwei Gong
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhang Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|