1
|
Gao X, Zhu Y, Lv T, Luo M, Jiang Y, Sun L, Zheng S, Jiang D, Ruan S. Resveratrol restrains colorectal cancer metastasis by regulating miR-125b-5p/TRAF6 signaling axis. Am J Cancer Res 2024; 14:2390-2407. [PMID: 38859844 PMCID: PMC11162648 DOI: 10.62347/zbvg9125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
Colorectal cancer is one of the most common malignancies with a high incidence, metastatic tendency and low 5-year survival rate. Resveratrol, a polyphenolic compound has been shown to inhibit colorectal cancer metastasis in recent studies. Its underlying molecular mechanism remains to be elucidated. Our findings demonstrated that miR-125b-5p, acting as a tumor suppressor, was conspicuously down-regulated in both colorectal cancer tissues and cell lines. The expression of miR-125b-5p negatively correlated with the expression of its direct target TNF receptor associated factor 6 (TRAF6). Both miR-125b-5p overexpression and TRAF6 knockdown inhibited metastasis of colorectal cancer cells. In addition, we uncovered that resveratrol up-regulated miR-125b-5p by increasing its stability and suppressed TRAF6-induced signal pathway in a dose/time-dependent manner. Resveratrol could significantly curtail the migration and invasion of colorectal cancer cells, which was counteracted by miR-125b-5p knockdown or TRAF6 overexpression. These results indicated that resveratrol could restrain colorectal cancer metastasis by promoting miR-125b-5p/TRAF6 signaling axis. Furthermore, lung metastasis models of colorectal cancer were constructed by tail vein injection. Down-regulation of miR-125b-5p could facilitate colorectal cancer metastasis in vivo, which could be impeded by resveratrol. In conclusion, our findings delineated the miR-125b-5p/TRAF6 signaling axis as a novel molecular mechanism underlying the metastatic process in colorectal cancer, as well as a prospective therapeutic target. Resveratrol disrupts colorectal cancer metastasis by activating miR-125b-5p/TRAF6 signal pathway and might improve the clinical outcome of colorectal cancer patients with low expression of miR-125b-5p.
Collapse
Affiliation(s)
- Xin Gao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310003, Zhejiang, China
| | - Ying Zhu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
| | - Tongdan Lv
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
| | - Mingpeng Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
| | - Yu Jiang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
| | - Leitao Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical UniversityHangzhou 310053, Zhejiang, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310003, Zhejiang, China
- Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019)Hangzhou 310003, Zhejiang, China
| | - Donghai Jiang
- NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310003, Zhejiang, China
- Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019)Hangzhou 310003, Zhejiang, China
| | - Shanming Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
| |
Collapse
|
2
|
Hussein MA, Valinezhad K, Adel E, Munirathinam G. MALAT-1 Is a Key Regulator of Epithelial-Mesenchymal Transition in Cancer: A Potential Therapeutic Target for Metastasis. Cancers (Basel) 2024; 16:234. [PMID: 38201661 PMCID: PMC10778055 DOI: 10.3390/cancers16010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript-1 (MALAT-1) is a long intergenic non-coding RNA (lncRNA) located on chr11q13. It is overexpressed in several cancers and controls gene expression through chromatin modification, transcriptional regulation, and post-transcriptional regulation. Importantly, MALAT-1 stimulates cell proliferation, migration, and metastasis and serves a vital role in driving the epithelial-to-mesenchymal transition (EMT), subsequently acquiring cancer stem cell-like properties and developing drug resistance. MALAT-1 modulates EMT by interacting with various intracellular signaling pathways, notably the phosphoinositide 3-kinase (PI3K)/Akt and Wnt/β-catenin pathways. It also behaves like a sponge for microRNAs, preventing their interaction with target genes and promoting EMT. In addition, we have used bioinformatics online tools to highlight the disparities in the expression of MALAT-1 between normal and cancer samples using data from The Cancer Genome Atlas (TCGA). Furthermore, the intricate interplay of MALAT-1 with several essential targets of cancer progression and metastasis renders it a good candidate for therapeutic interventions. Several innovative approaches have been exploited to target MALAT-1, such as short hairpin RNAs (shRNAs), antisense oligonucleotides (ASOs), and natural products. This review emphasizes the interplay between MALAT-1 and EMT in modulating cancer metastasis, stemness, and chemoresistance in different cancers.
Collapse
Affiliation(s)
- Mohamed Ali Hussein
- Department of Pharmaceutical Services, Children’s Cancer Hospital Egypt, Cairo 57357, Egypt;
- Department of Biology, School of Sciences and Engineering, American University in Cairo, New Cairo 11835, Egypt;
| | - Kamyab Valinezhad
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA;
| | - Eman Adel
- Department of Biology, School of Sciences and Engineering, American University in Cairo, New Cairo 11835, Egypt;
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA;
| |
Collapse
|
3
|
Alvarez-Cirerol FJ, Galván-Moroyoqui JM, Rodríguez-León E, Candía-Plata C, Rodríguez-Beas C, López-Soto LF, Rodríguez-Vázquez BE, Bustos-Arriaga J, Soto-Guzmán A, Larios-Rodríguez E, Martínez-Soto JM, Martinez-Higuera A, Iñiguez-Palomares RA. Monocyte (THP-1) Response to Silver Nanoparticles Synthesized with Rumex hymenosepalus Root Extract. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:106. [PMID: 38202561 PMCID: PMC10780692 DOI: 10.3390/nano14010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
The study, synthesis, and application of nanomaterials in medicine have grown exponentially in recent years. An example of this is the understanding of how nanomaterials activate or regulate the immune system, particularly macrophages. In this work, nanoparticles were synthesized using Rumex hymenosepalus as a reducing agent (AgRhNPs). According to thermogravimetric analysis, the metal content of nanoparticles is 55.5% by weight. The size of the particles ranges from 5-26 nm, with an average of 11 nm, and they possess an fcc crystalline structure. The presence of extract molecules on the nanomaterial was confirmed by UV-Vis and FTIR. It was found by UPLC-qTOF that the most abundant compounds in Rh extract are flavonols, flavones, isoflavones, chalcones, and anthocyanidins. The viability and apoptosis of the THP-1 cell line were evaluated for AgRhNPs, commercial nanoparticles (AgCNPs), and Rh extract. The results indicate a minimal cytotoxic and apoptotic effect at a concentration of 12.5 μg/mL for both nanoparticles and 25 μg/mL for Rh extract. The interaction of the THP-1 cell line and treatments was used to evaluate the polarization of monocyte subsets in conjunction with an evaluation of CCR2, Tie-2, and Arg-1 expression. The AgRhNPs nanoparticles and Rh extract neither exhibited cytotoxicity in the THP-1 monocyte cell line. Additionally, the treatments mentioned above exhibited anti-inflammatory effects by maintaining the classical monocyte phenotype CD14++CD16, reducing pro-inflammatory interleukin IL-6 production, and increasing IL-4 production.
Collapse
Affiliation(s)
| | - José Manuel Galván-Moroyoqui
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | - Ericka Rodríguez-León
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico; (E.R.-L.); (C.R.-B.); (B.E.R.-V.)
| | - Carmen Candía-Plata
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | - César Rodríguez-Beas
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico; (E.R.-L.); (C.R.-B.); (B.E.R.-V.)
| | - Luis Fernando López-Soto
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | | | - José Bustos-Arriaga
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Adriana Soto-Guzmán
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | - Eduardo Larios-Rodríguez
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico;
| | - Juan M. Martínez-Soto
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | | | - Ramón A. Iñiguez-Palomares
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico; (E.R.-L.); (C.R.-B.); (B.E.R.-V.)
| |
Collapse
|
4
|
Tong K, Wang P, Li Y, Tong Y, Li X, Yan S, Hu P. Resveratrol Inhibits Hepatocellular Carcinoma Progression through Regulating Exosome Secretion. Curr Med Chem 2024; 31:2107-2118. [PMID: 37711128 PMCID: PMC11071656 DOI: 10.2174/0929867331666230914090053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND AND OBJECTIVES Resveratrol is a promising drug for tumor therapy, but its anti-tumor mechanism remains unclarified. The present study aimed to explore the effect of resveratrol on the secretion of exosomes and the role of resveratrol-induced exosomes in the progression of hepatocellular carcinoma. METHODS The number and contents of exosomes induced by resveratrol were determined by nanoparticle tracking analysis and high-throughput sequencing in Huh7 cells, respectively. Expression of Rab27a was assessed by western blotting and immunofluorescence. Cell proliferation, migration and epithelial-mesenchymal transition were examined with the stimuli of resveratrol and exosomes, the activity of autophagy and wnt/β-catenin signaling induced by resveratrol-induced exosomes and knockdown of lncRNA SNHG29 were monitored by western blotting and immunofluorescence. RESULTS It was found that resveratrol might inhibit the exosome secretion by down-regulating the expression of Rab27a, thereby suppressing the proliferation, migration and epithelial-mesenchymal transition of Huh7 cells. Moreover, resveratrol-induced exosomes could also inhibit the malignant phenotype of Huh7 cells via inhibiting the nuclear translocation of β-catenin and the activation of autophagy, which lncRNA SNHG29 might mediate. CONCLUSION Resveratrol inhibits hepatocellular carcinoma progression by regulating exosome secretion and contents.
Collapse
Affiliation(s)
- Kun Tong
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Laboratory Medicine, Huang Gang Central Hospital, Huanggang, China
| | - Pingfeng Wang
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Ying Li
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yaoyao Tong
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of HCC, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Laboratory Medicine, General Hospital of the Yangtze River Shipping, Wuhan, China
| | - Xuejie Li
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shirong Yan
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Pei Hu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
5
|
Rezakhani L, Salmani S, Eliyasi Dashtaki M, Ghasemi S. Resveratrol: Targeting Cancer Stem Cells and ncRNAs to Overcome Cancer Drug Resistance. Curr Mol Med 2024; 24:951-961. [PMID: 37592772 DOI: 10.2174/1566524023666230817102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 08/19/2023]
Abstract
A major challenge in treating cancer is the development of drug resistance, which can result in treatment failure and tumor recurrence. Targeting cancer stem cells (CSCs) and non-coding RNAs (ncRNAs) with a polyphenolic substance called resveratrol has the ability to combat this problem by lowering cancer resistance to drugs and opening up new therapeutic options. Resveratrol alters the expression of genes related to self-renewal, modulating important signaling pathways involved in cancer initiation and CSC control. Additionally, resveratrol affects non-coding RNAs (ncRNAs), including Micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs which are essential for stemness, drug resistance, and other cancer-related activities. Numerous studies have shown that resveratrol has the potential to be an effective anticancer drug when used in combination therapy, but issues with absorption and pharmacokinetics still need to be resolved before it can be used in clinical applications. Reducing chemotherapy resistance by better understanding the intricate mechanisms by which resveratrol affects cancer cells and CSCs, as well as its impact on ncRNA expression, could eventually contribute to more effective cancer treatments. To completely understand these pathways and optimize the utilization of resveratrol in combination treatments, additional study is necessary.
Collapse
Affiliation(s)
- Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sima Salmani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Masoumeh Eliyasi Dashtaki
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
Zhou DD, Cheng J, Li J, Wu SX, Xiong RG, Huang SY, Cheung PCK, Li HB. Resveratrol and Its Analogues: Anti-ageing Effects and Underlying Mechanisms. Subcell Biochem 2024; 107:183-203. [PMID: 39693025 DOI: 10.1007/978-3-031-66768-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Ageing is a natural process accompanied by functional and structural decline of diverse tissues and organs, which could cause susceptibility to various diseases and death. The anti-ageing interventions have aroused huge research interest with the rapid rise of ageing population in the world. Resveratrol, a polyphenolic stilbene, could be naturally isolated from various plants, such as grapes, blueberries, and peanuts. Many studies indicated that resveratrol possessed a broad spectrum of bioactivities, especially anti-ageing activity. A lot of attention has also been focused on resveratrol analogues because they have a similar structure to resveratrol, which may confer them a potent anti-ageing effect. The anti-ageing mechanisms of resveratrol and its analogues are complex and multifactorial, involving suppressing oxidative stress, ameliorating inflammation, activating SIRT1 pathway, reducing DNA damage, etc. In this chapter, the anti-ageing effects of resveratrol and its analogues are summarised with special attention paid to the underlying mechanisms. Further understanding of these small molecules could provide the necessary scientific basis for their development into anti-ageing agents.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- Food & Nutritional Sciences Program, School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jin Cheng
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jiahui Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Si-Xia Wu
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ruo-Gu Xiong
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Si-Yu Huang
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Peter Chi-Keung Cheung
- Food & Nutritional Sciences Program, School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Hua-Bin Li
- School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
7
|
Abdel-Sattar OE, Allam RM, Al-Abd AM, El-Halawany AM, EL-Desoky AM, Mohamed SO, Sweilam SH, Khalid M, Abdel-Sattar E, Meselhy MR. Hypophyllanthin and Phyllanthin from Phyllanthus niruri Synergize Doxorubicin Anticancer Properties against Resistant Breast Cancer Cells. ACS OMEGA 2023; 8:28563-28576. [PMID: 37576627 PMCID: PMC10413485 DOI: 10.1021/acsomega.3c02953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
Doxorubicin (DOX) is a cornerstone chemotherapeutic agent for the treatment of several malignancies such as breast cancer; however, its activity is ameliorated by the development of a resistant phenotype. Phyllanthus species have been studied previously for their potential anticancer properties. The current work is aimed to study the potential cytotoxicity and chemomodulatory effects of hypophyllanthin (PN4) and phyllanthin (PN5) isolated from Phyllanthus niruri to DOX against the adriamycin multidrug-resistant breast cancer cells (MCF-7ADR) and elucidate their mechanism of action. The major compounds of the active methylene chloride fraction were isolated and assessed for their potential cytotoxicity and chemomodulatory effects on DOX against naïve (MCF-7) and resistant breast (MCF-7ADR) cancer cells. The mechanism of action of both compounds in terms of their impacts on programmed/non-programmed cell death (apoptosis and autophagy/necrosis), cell cycle progression/arrest, and tumor cell migration/invasion was investigated. Both compounds PN4 and PN5 showed a moderate but similar potency against MCF-7 as well as MCF-7ADR and significantly synergized DOX-induced anticancer properties against MCF-7ADR. The chemomodulatory effect of both compounds to DOX was found to be via potentiating DOX-induced cell cycle interference and apoptosis induction. It was found that PN4 and PN5 blocked the apoptosis-escape autophagy pathway in MCF-7ADR. On the molecular level, both compounds interfered with SIRT1 expression and consequently suppressed Akt phosphorylation, and PN5 blocked apoptosis escape. Furthermore, PN4 and PN5 showed promising antimigratory and anti-invasive effects against MCF-7ADR, as confirmed by suppression of N-cadherin/β-catenin expression. In conclusion, for the first time, hypophyllanthin and phyllanthin isolated from P. niruri showed promising chemomodulatory effects to the DOX-induced chemotherapeutic activity against MCF-7ADR. Both compounds significantly synergized DOX-induced anticancer properties against MCF-7ADR. This enhanced activity was explained by further promoting DOX-induced apoptosis and suppressing the apoptosis-escape autophagy feature of the resistant breast cancer cells. Both compounds (hypophyllanthin and phyllanthin) interfered with the SIRT1/Akt pathway and suppressed the N-cadherin/β-catenin axis, confirming the observed antiproliferative, cytotoxic, and anti-invasive effects of hypophyllanthin and phyllanthin.
Collapse
Affiliation(s)
- Ola E. Abdel-Sattar
- Pharmacognosy Department,
Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| | - Rasha M. Allam
- Pharmacology
Department, Medical Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ahmed M. Al-Abd
- Pharmacology
Department, Medical Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ali M. El-Halawany
- Pharmacognosy Department,
Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| | - Ahmed M. EL-Desoky
- Department of Molecular Biology,
Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City 32958, Egypt
| | - Shanaz O. Mohamed
- School of Pharmaceutical
Sciences, Universiti Sains Malaysia, Gelugor, Penang 11700, Malaysia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of
Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Essam Abdel-Sattar
- Pharmacognosy Department,
Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| | - Meselhy R. Meselhy
- Pharmacognosy Department,
Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| |
Collapse
|
8
|
Mebarek S, Skafi N, Brizuela L. Targeting Sphingosine 1-Phosphate Metabolism as a Therapeutic Avenue for Prostate Cancer. Cancers (Basel) 2023; 15:2732. [PMID: 37345069 DOI: 10.3390/cancers15102732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Prostate cancer (PC) is the second most common cancer in men worldwide. More than 65% of men diagnosed with PC are above 65. Patients with localized PC show high long-term survival, however with the disease progression into a metastatic form, it becomes incurable, even after strong radio- and/or chemotherapy. Sphingosine 1-phosphate (S1P) is a bioactive lipid that participates in all the steps of oncogenesis including tumor cell proliferation, survival, migration, invasion, and metastatic spread. The S1P-producing enzymes sphingosine kinases 1 and 2 (SK1 and SK2), and the S1P degrading enzyme S1P lyase (SPL), have been shown to be highly implicated in the onset, development, and therapy resistance of PC during the last 20 years. In this review, the most important studies demonstrating the role of S1P and S1P metabolic partners in PC are discussed. The different in vitro, ex vivo, and in vivo models of PC that were used to demonstrate the implication of S1P metabolism are especially highlighted. Furthermore, the most efficient molecules targeting S1P metabolism that are under preclinical and clinical development for curing PC are summarized. Finally, the possibility of targeting S1P metabolism alone or combined with other therapies in the foreseeable future as an alternative option for PC patients is discussed. Research Strategy: PubMed from INSB was used for article research. First, key words "prostate & sphingosine" were used and 144 articles were found. We also realized other combinations of key words as "prostate cancer bone metastasis" and "prostate cancer treatment". We used the most recent reviews to illustrate prostate cancer topic and sphingolipid metabolism overview topic.
Collapse
Affiliation(s)
- Saida Mebarek
- CNRS UMR 5246, INSA Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), 69622 Lyon, France
| | - Najwa Skafi
- CNRS, LAGEPP UMR 5007, University of Lyon, Université Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Leyre Brizuela
- CNRS UMR 5246, INSA Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), 69622 Lyon, France
| |
Collapse
|
9
|
Involvement of Mitochondrial Dysfunction in the Inflammatory Response in Human Mesothelial Cells from Peritoneal Dialysis Effluent. Antioxidants (Basel) 2022; 11:antiox11112184. [DOI: 10.3390/antiox11112184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Recent studies have related mitochondrial impairment with peritoneal membrane damage during peritoneal dialysis (PD) therapy. Here, we assessed the involvement of mitochondrial dysfunction in the inflammatory response in human mesothelial cells, a hallmark in the pathogenesis of PD-related peritoneal membrane damage. Our ex vivo studies showed that IL-1β causes a drop in the mitochondrial membrane potential in cells from peritoneal effluent. Moreover, when mitochondrial damage was induced by inhibitors of mitochondrial function, a low-grade inflammatory response was generated. Interestingly, mitochondrial damage sensitized mesothelial cells, causing a significant increase in the inflammatory response induced by cytokines, in which ROS generation and NF-κB activation appear to be involved, since inflammation was counteracted by both mitoTEMPO (mitochondrial ROS scavenger) and BAY-117085 (NF-κB inhibitor). Furthermore, the natural anti-inflammatory antioxidant resveratrol significantly attenuated the inflammatory response, by reversing the decline in mitochondrial membrane potential and decreasing the expression of IL-8, COX-2 and PGE2 caused by IL-1β. These findings suggest that IL-1β regulates mitochondrial function in mesothelial cells and that mitochondrial dysfunction could induce an inflammatory scenario that sensitizes these cells, causing significant amplification of the inflammatory response induced by cytokines. Resveratrol may represent a promising strategy in controlling the mesothelial inflammatory response to PD.
Collapse
|
10
|
Zhang W, Zhang R, Chang Z, Wang X. Resveratrol activates CD8+ T cells through IL-18 bystander activation in lung adenocarcinoma. Front Pharmacol 2022; 13:1031438. [PMCID: PMC9630476 DOI: 10.3389/fphar.2022.1031438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Resveratrol, a natural product, has demonstrated anti-tumor effects in various kinds of tumor types, including colon, breast, and pancreatic cancers. Most research has focused on the inhibitory effects of resveratrol on tumor cells themselves rather than resveratrol’s effects on tumor immunology. In this study, we found that resveratrol inhibited the growth of lung adenocarcinoma in a subcutaneous tumor model by using the β-cyclodextrin-resveratrol inclusion complex. After resveratrol treatment, the proportion of M2-like tumor-associated macrophages (TAMs) was reduced and tumor-infiltrating CD8T cells showed significantly increased activation. The results of co-culture and antibody neutralization experiments suggested that macrophage-derived IL-18 may be a key cytokine in the resveratrol anti-tumor effect of CD8T cell activation. The results of this study demonstrate a novel view of the mechanisms of resveratrol tumor suppression. This natural product could reprogram TAMs and CD8T effector cells for tumor treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Emergency and Disaster Medical Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Ruohao Zhang
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Zhiguang Chang, ; Xiaobo Wang,
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Zhiguang Chang, ; Xiaobo Wang,
| |
Collapse
|
11
|
A Resveratrol Phenylacetamide Derivative Perturbs the Cytoskeleton Dynamics Interfering with the Migration Potential in Breast Cancer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemotherapy is commonly used for cancer treatment, however the lack of selectivity on healthy cells and the development of resistance phenomena are the major issues. A better understanding of cancer genetics helped the development of new targeted anticancer treatments, which permit drug delivery with high specificity and lower toxicity. Moreover, the multi-target drug design concept represents the current trend for future drug research and development. Starting from good results previously obtained by our research group on the resveratrol (RSV) phenylacetamide derivative 2, which displayed an interesting anti-inflammatory and anti-proliferative activity towards the breast cancer cells MCF-7 and MDA-MB-231, we identified other features, as the ability to perturb the cytoskeleton dynamics and interfere with the migration and metastatic processes. In vitro and in silico studies demonstrate that the derivative 2 is a tubulin and actin polymerization inhibitor and an actin depolymerization promotor. In addition, it interferes with the metastatic potential in both the breast cancer cells, inhibiting the in vitro cell migration and decreasing the spheroids number. These promising results demonstrate that the RSV phenylacetamide derivative 2 could be an important starting point in the discovery and development of safer and more efficacy multi-targeted agents.
Collapse
|
12
|
Ge H, Xu C, Chen H, Liu L, Zhang L, Wu C, Lu Y, Yao Q. Traditional Chinese Medicines as Effective Reversals of Epithelial-Mesenchymal Transition Induced-Metastasis of Colorectal Cancer: Molecular Targets and Mechanisms. Front Pharmacol 2022; 13:842295. [PMID: 35308223 PMCID: PMC8931761 DOI: 10.3389/fphar.2022.842295] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer worldwide. Distant metastasis is the major cause of cancer-related mortality in patients with CRC. Epithelial-mesenchymal transition (EMT) is a critical process triggered during tumor metastasis, which is also the main impetus and the essential access within this duration. Therefore, targeting EMT-related molecular pathways has been considered a novel strategy to explore effective therapeutic agents against metastatic CRC. Traditional Chinese medicines (TCMs) with unique properties multi-target and multi-link that exert their therapeutic efficacies holistically, which could inhibit the invasion and metastasis ability of CRC cells via inhibiting the EMT process by down-regulating transforming growth factor-β (TGF-β)/Smads, PI3K/Akt, NF-κB, Wnt/β-catenin, and Notch signaling pathways. The objective of this review is to summarize and assess the anti-metastatic effect of TCM-originated bioactive compounds and Chinese medicine formulas by mediating EMT-associated signaling pathways in CRC therapy, providing a foundation for further research on the exact mechanisms of action through which TCMs affect EMT transform in CRC.
Collapse
Affiliation(s)
- Hongzhang Ge
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Integration of Chinese and Western Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Chao Xu
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Integration of Chinese and Western Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Haitao Chen
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Integration of Chinese and Western Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ling Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Integration of Chinese and Western Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lei Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Integration of Chinese and Western Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Changhong Wu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Lu
- Department of Clinical Nutrition, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Qinghua Yao
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Integration of Chinese and Western Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Nutrition, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Qinghua Yao,
| |
Collapse
|
13
|
Feng C, Liu S, Shang Z. Identification and Validation of an EMT-Related LncRNA Signature for HNSCC to Predict Survival and Immune Landscapes. Front Cell Dev Biol 2022; 9:798898. [PMID: 35273966 PMCID: PMC8902443 DOI: 10.3389/fcell.2021.798898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are increasingly recognized as decisive factors in the progression of head and neck squamous cell carcinoma (HNSCC), and they participate in the epithelial–mesenchymal transformation (EMT) of HNSCC. LncRNAs are closely related to the prognosis of patients with HNSCC; thus, it is essential to identify EMT-related lncRNAs with prognostic value for HNSCC. The coexpression network of EMT-related lncRNAs was constructed using The Cancer Genome Atlas (TCGA). An EMT-related eight-lncRNA-based prognostic signature was constructed using LASSO Cox regression and Cox proportional hazards analyses. Univariate and multivariate analyses and stratified prognosis confirmed that the prognostic signature was an independent predictive factor. Subsequently, we performed immune cell infiltration analysis, gene set enrichment analysis (GSEA), and single-sample GSEA (ssGSEA) pathway enrichment analysis to uncover the potential molecular mechanisms of prognostic differences in the high- and low-risk groups. Next, we discussed the relationship between the prognostic signature and immune checkpoint-related genes, their TIDE scores, and the sensitivity of common chemotherapeutics. Finally, we further verified the expression differences in lncRNAs that were included in our signature via RT–qPCR in eighteen paired tissues. In summary, this prognostic signature provides powerful prognostic biomarkers for HNSCC and could serve as a predictor for the sensitivity of common chemotherapeutics and immunotherapy responses as well as providing a reference for further personalized treatment.
Collapse
Affiliation(s)
- Chunyu Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shaopeng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Zhengjun Shang,
| |
Collapse
|
14
|
Segovia-Mendoza M, García-Quiroz J, Díaz L, García-Becerra R. Combinations of Calcitriol with Anticancer Treatments for Breast Cancer: An Update. Int J Mol Sci 2021; 22:12741. [PMID: 34884550 PMCID: PMC8657847 DOI: 10.3390/ijms222312741] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Preclinical, clinical, and epidemiological studies indicate that vitamin D3 (VD) deficiency is a risk factor for the development of breast cancer. Underlying mechanisms include the ability of calcitriol to induce cell differentiation, inhibit oncogenes expression, and modify different signaling pathways involved in the control of cell proliferation. In addition, calcitriol combined with different kinds of antineoplastic drugs has been demonstrated to enhance their beneficial effects in an additive or synergistic fashion. However, a recognized adjuvant regimen based on calcitriol for treating patients with breast cancer has not yet been fully established. Accordingly, in the present work, we review and discuss the preclinical and clinical studies about the combination of calcitriol with different oncological drugs, aiming to emphasize its main therapeutic benefits and opportunities for the treatment of this pathology.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
15
|
Leischner C, Burkard M, Michel A, Berchtold S, Niessner H, Marongiu L, Busch C, Frank J, Lauer UM, Venturelli S. Comparative Analysis of the Antitumor Activity of Cis- and Trans-Resveratrol in Human Cancer Cells with Different p53 Status. Molecules 2021; 26:5586. [PMID: 34577057 PMCID: PMC8466563 DOI: 10.3390/molecules26185586] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Resveratrol, a natural plant phytoalexin, is produced in response to fungal infection or- UV irradiation. It exists as an isomeric pair with cis- and trans-conformation. Whereas multiple physiological effects of the trans-form, including a pronounced anti-tumoral activity, are nowadays elucidated, much less knowledge exists concerning the cis-isomer. In our work, we analyzed the antiproliferative and cytotoxic properties of cis-resveratrol in four different human tumor entities in direct comparison to trans-resveratrol. We used human cell lines as tumor models for hepatocellular carcinoma (HCC; HepG2, Hep3B), colon carcinoma (HCT-116, HCT-116/p53(-/-)), pancreatic carcinoma (Capan-2, MiaPaCa-2), and renal cell carcinoma (A498, SN12C). Increased cytotoxicity in all investigated tumor cells was observed for the trans-isomer. To verify possible effects of the tumor suppressor p53 on resveratrol-induced cell death, we used wild type and p53-deleted or -mutated cell lines for every tested tumor entity. Applying viability and cytotoxicity assays, we demonstrated a differential, dose-dependent sensitivity towards cis- or trans-resveratrol among the respective tumor types.
Collapse
Affiliation(s)
- Christian Leischner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (M.B.); (A.M.); (H.N.); (L.M.)
| | - Markus Burkard
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (M.B.); (A.M.); (H.N.); (L.M.)
| | - Anja Michel
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (M.B.); (A.M.); (H.N.); (L.M.)
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Susanne Berchtold
- Department of Internal Medicine VIII, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.B.); (U.M.L.)
| | - Heike Niessner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (M.B.); (A.M.); (H.N.); (L.M.)
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (M.B.); (A.M.); (H.N.); (L.M.)
| | | | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Ulrich M. Lauer
- Department of Internal Medicine VIII, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.B.); (U.M.L.)
- German Cancer Consortium (DKTK), DKFZ Partner Site, 72076 Tuebingen, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (M.B.); (A.M.); (H.N.); (L.M.)
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, 72074 Tuebingen, Germany
| |
Collapse
|