1
|
Galiana-Melendez F, Huot JR. The Impact of Non-bone Metastatic Cancer on Musculoskeletal Health. Curr Osteoporos Rep 2024; 22:318-329. [PMID: 38649653 DOI: 10.1007/s11914-024-00872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the musculoskeletal consequences of cancer, including those that occur in the absence of bone metastases. RECENT FINDINGS Cancer patients frequently develop cachexia, a debilitating condition reflected by weight loss and skeletal muscle wasting. The negative effects that tumors exert on bone health represents a growing interest amongst cachexia researchers. Recent clinical and pre-clinical evidence demonstrates cancer-induced bone loss, even in the absence of skeletal metastases. Together with muscle wasting, losses in bone demonstrates the impact of cancer on the musculoskeletal system. Identifying therapeutic targets that comprehensively protect musculoskeletal health is essential to improve the quality of life in cancer patients and survivors. IL-6, RANKL, PTHrP, sclerostin, and TGF-β superfamily members represent potential targets to counteract cachexia. However, more research is needed to determine the efficacy of these targets in protecting both skeletal muscle and bone.
Collapse
Affiliation(s)
| | - Joshua R Huot
- Department of Anatomy, Cell Biology & Physiology, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Edwards CM, Kane JF, Smith JA, Grant DM, Johnson JA, Diaz MAH, Vecchi LA, Bracey KM, Omokehinde TN, Fontana JR, Karno BA, Scott HT, Vogel CJ, Lowery JW, Martin TJ, Johnson RW. PTHrP intracrine actions divergently influence breast cancer growth through p27 and LIFR. Breast Cancer Res 2024; 26:34. [PMID: 38409028 PMCID: PMC10897994 DOI: 10.1186/s13058-024-01791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
The role of parathyroid hormone (PTH)-related protein (PTHrP) in breast cancer remains controversial, with reports of PTHrP inhibiting or promoting primary tumor growth in preclinical studies. Here, we provide insight into these conflicting findings by assessing the role of specific biological domains of PTHrP in tumor progression through stable expression of PTHrP (-36-139aa) or truncated forms with deletion of the nuclear localization sequence (NLS) alone or in combination with the C-terminus. Although the full-length PTHrP molecule (-36-139aa) did not alter tumorigenesis, PTHrP lacking the NLS alone accelerated primary tumor growth by downregulating p27, while PTHrP lacking the NLS and C-terminus repressed tumor growth through p27 induction driven by the tumor suppressor leukemia inhibitory factor receptor (LIFR). Induction of p27 by PTHrP lacking the NLS and C-terminus persisted in bone disseminated cells, but did not prevent metastatic outgrowth, in contrast to the primary tumor site. These data suggest that the PTHrP NLS functions as a tumor suppressor, while the PTHrP C-terminus may act as an oncogenic switch to promote tumor progression through differential regulation of p27 signaling.
Collapse
Affiliation(s)
- Courtney M Edwards
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeremy F Kane
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jailyn A Smith
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Déja M Grant
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Meharry Medical College, Nashville, TN, USA
| | - Jasmine A Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria A Hernandez Diaz
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lawrence A Vecchi
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kai M Bracey
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Tolu N Omokehinde
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph R Fontana
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, 37232, USA
| | - Breelyn A Karno
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, 37232, USA
| | - Halee T Scott
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, 37232, USA
| | - Carolina J Vogel
- Marian University College of Osteopathic Medicine, Indianapolis, IN, USA
- Bone and Muscle Research Group, Marian University, Indianapolis, IN, USA
| | - Jonathan W Lowery
- Marian University College of Osteopathic Medicine, Indianapolis, IN, USA
- Bone and Muscle Research Group, Marian University, Indianapolis, IN, USA
- Academic Affairs, Marian University, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - T John Martin
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC, Australia
| | - Rachelle W Johnson
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Niu I, Hsiao EC, Wustrack R, Wysolmerski JJ, Dann P, Masharani U. A Case of Hypercalcemia from PTHrP-Producing Fibromyxoid Sarcoma Responsive to Glucocorticoid Therapy. Calcif Tissue Int 2023; 113:246-253. [PMID: 37358786 PMCID: PMC10372127 DOI: 10.1007/s00223-023-01099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/27/2023]
Abstract
The treatment of parathyroid hormone-related protein (PTHrP)-mediated hypercalcemia of malignancy includes treating the malignancy, intravenous fluids, and anti-resorptive therapies such as zoledronic acid or denosumab. PTHrP-mediated hypercalcemia has been reported in benign conditions such as systemic lupus erythematous (SLE) and sarcoidosis and appears to be responsive to glucocorticoids. We report a case of PTHrP-induced hypercalcemia due to a malignancy-low grade fibromyxoid sarcoma-that responded to glucocorticoid treatment. This is the first report of glucocorticoids controlling PTHrP-mediated hypercalcemia of malignancy. Immunohistochemistry of the surgical pathology localized PTHrP staining to the vascular endothelial cells within the tumor. Further studies are needed to elucidate the mechanism of glucocorticoid action in the treatment of PTHrP-mediated hypercalcemia of malignancy.
Collapse
Affiliation(s)
- Isabella Niu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of California, San Francisco, 400 Parnassus Ave., Suite A-550, San Francisco, CA, 94143, USA.
| | - Edward C Hsiao
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of California, San Francisco, 400 Parnassus Ave., Suite A-550, San Francisco, CA, 94143, USA
| | - Rosanna Wustrack
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of California, San Francisco, 400 Parnassus Ave., Suite A-550, San Francisco, CA, 94143, USA
| | - John J Wysolmerski
- Division of Endocrinology and Metabolism, Department of Medicine, Yale School of Medicine, Yale University, TAC S141D, 300 Cedar Street, New Haven, CT, 06520-8020, USA
| | - Pamela Dann
- Division of Endocrinology and Metabolism, Department of Medicine, Yale School of Medicine, Yale University, TAC S141D, 300 Cedar Street, New Haven, CT, 06520-8020, USA
| | - Umesh Masharani
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of California, San Francisco, 400 Parnassus Ave., Suite A-550, San Francisco, CA, 94143, USA
| |
Collapse
|
4
|
Shimonty A, Bonewald LF, Huot JR. Metabolic Health and Disease: A Role of Osteokines? Calcif Tissue Int 2023; 113:21-38. [PMID: 37193929 DOI: 10.1007/s00223-023-01093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Maintenance of skeletal health is tightly regulated by osteocytes, osteoblasts, and osteoclasts via coordinated secretion of bone-derived factors, termed osteokines. Disruption of this coordinated process due to aging and metabolic disease promotes loss of bone mass and increased risk of fracture. Indeed, growing evidence demonstrates that metabolic diseases, including type 2 diabetes, liver disease and cancer are accompanied by bone loss and altered osteokine levels. With the persistent prevalence of cancer and the growing epidemic of metabolic disorders, investigations into the role of inter-tissue communication during disease progression are on the rise. While osteokines are imperative for bone homeostasis, work from us and others have identified that osteokines possess endocrine functions, exerting effects on distant tissues including skeletal muscle and liver. In this review we first discuss the prevalence of bone loss and osteokine alterations in patients with type 2 diabetes, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, cirrhosis, and cancer. We then discuss the effects of osteokines in mediating skeletal muscle and liver homeostasis, including RANKL, sclerostin, osteocalcin, FGF23, PGE2, TGF-β, BMPs, IGF-1 and PTHrP. To better understand how inter-tissue communication contributes to disease progression, it is essential that we include the bone secretome and the systemic roles of osteokines.
Collapse
Affiliation(s)
- Anika Shimonty
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua R Huot
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Kane JF, Johnson RW. Re-Evaluating the Role of PTHrP in Breast Cancer. Cancers (Basel) 2023; 15:2670. [PMID: 37345007 PMCID: PMC10216606 DOI: 10.3390/cancers15102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Parathyroid-hormone-related protein (PTHrP) is a protein with a long history of association with bone metastatic cancers. The paracrine signaling of PTHrP through the parathyroid hormone receptor (PTHR1) facilitates tumor-induced bone destruction, and PTHrP is known as the primary driver of humoral hypercalcemia of malignancy. In addition to paracrine signaling, PTHrP is capable of intracrine signaling independent of PTHR1 binding, which is essential for cytokine-like functions in normal physiological conditions in a variety of tissue types. Pre-clinical and clinical studies evaluating the role of PTHrP in breast cancer have yielded contradictory conclusions, in some cases indicating the protein is tumor suppressive, and in other studies, pro-growth. This review discusses the possible molecular basis for the disharmonious prognostic indications of these studies and highlights the implications of the paracrine, intracrine, and nuclear functions of the protein. This review also examines the current understanding of the functional domains of PTHrP and re-evaluates their role in the unique context of the breast cancer environment. This review will expand on the current understanding of PTHrP by attempting to reconcile the functional domains of the protein with its intracrine signaling in cancer.
Collapse
Affiliation(s)
- Jeremy F. Kane
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Shen L, He Y, Chen S, He L, Zhang Y. PTHrP Modulates the Proliferation and Osteogenic Differentiation of Craniofacial Fibrous Dysplasia-Derived BMSCs. Int J Mol Sci 2023; 24:ijms24087616. [PMID: 37108778 PMCID: PMC10146947 DOI: 10.3390/ijms24087616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Fibrous dysplasia (FD) is a skeletal stem cell disease caused by mutations in the guanine nucleotide-binding protein, alpha-stimulating activity polypeptide (GNAS) gene, which results in the abnormal accumulation of cyclic adenosine monophosphate (cAMP) and hyperactivation of downstream signaling pathways. Parathyroid hormone-related protein (PTHrP) is secreted by the osteoblast lineage and is involved in various physiological and pathological activities of bone. However, the association between the abnormal expression of PTHrP and FD, as well as its underlying mechanism, remains unclear. In this study, we discovered that FD patient-derived bone marrow stromal cells (FD BMSCs) expressed significantly higher levels of PTHrP during osteogenic differentiation and exhibited greater proliferation capacity but impaired osteogenic ability compared to normal control patient-derived BMSCs (NC BMSCs). Continuous exogenous PTHrP exposure on the NC BMSCs promoted the FD phenotype in both in vitro and in vivo experiments. Through the PTHrP/cAMP/PKA axis, PTHrP could partially influence the proliferation and osteogenesis capacity of FD BMSCs via the overactivation of the Wnt/β-Catenin signaling pathway. Furthermore, PTHrP not only directly modulated cAMP/PKA/CREB transduction but was also demonstrated as a transcriptional target of CREB. This study provides novel insight into the possible pathogenesis involved in the FD phenotype and enhances the understanding of its molecular signaling pathways, offering theoretical evidence for the feasibility of potential therapeutic targets for FD.
Collapse
Affiliation(s)
- Lihang Shen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yang He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Shuo Chen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Linhai He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100034, China
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
7
|
Tian SX, Xu T, Shi RY, Cai YQ, Wu MH, Zhen SJ, Wang W, Zhou Y, Du JY, Fang JF, Shao XM, Liu BY, Jiang YL, He XF, Fang JQ, Liang Y. Analgesic effect of electroacupuncture on bone cancer pain in rat model: the role of peripheral P2X3 receptor. Purinergic Signal 2023; 19:13-27. [PMID: 35478452 PMCID: PMC9984641 DOI: 10.1007/s11302-022-09861-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Upregulation of P2X3 receptor (P2X3R) has been strongly implicated in nociceptive signaling including bone cancer pain (BCP). The present study, using rat bone cancer model, aimed to explore the role of P2X3R in regulating rat pain behavior under the intervention of electroacupuncture (EA). The BCP model was successfully established by injection with MRMT-1 breast cancer cell into the medullary cavity of left tibia for 3 × 104 cells/3 μL PBS in rats as revealed by obvious bone destruction, decreased paw withdrawal thresholds (PWTs), and reduced paw withdrawal latencies (PWLs). Western blot analyses showed that P2X3R expression was significantly upregulated in ipsilateral lumbar 4-6 (L4-6) dorsal root ganglia (DRG), but the difference not seen in spinal cord dorsal horn (SCDH). With the in-depth study of P2X3R activation, we observed that intrathecal injection of P2X3R agonist α,β-meATP aggravated MRMT-1 induced BCP, while injection of P2X3R inhibitor A-317491 alleviated pain. Subsequently, we demonstrated that BCP induced mechanical allodynia and thermal hyperalgesia were attenuated after EA treatment. Under EA treatment, total P2X3R protein expression in ipsilateral DRGs was decreased, and it is worth mentioning that decreased expression of P2X3R membrane protein, which indicated that both the expression and membrane trafficking of P2X3R were inhibited by EA. The immunofluorescence assay showed that EA stimulation exerted functions by reducing the expression of P2X3R-positive cells in ipsilateral DRGs of BCP rats. Ca2+ imaging analysis revealed that the EA stimulation decreased the percentage of α,β-meATP responsive neurons in DRGs and inhibited calcium influx. Notably, the inhibitory effect of EA on mechanical allodynia and nociceptive flinches was abolished by intrathecal injection of α,β-meATP. These findings demonstrated EA stimulation ameliorated mechanical allodynia and thermal hyperalgesia in rat model of MRMT-1-induced BCP. EA exerts analgesic effect on BCP by reducing the overexpression and functional activity of P2X3R in ipsilateral DRGs of BCP rats. Our work first demonstrates the critical and overall role of P2X3R in EA's analgesia against peripheral sensitization of MRMT-1-induced BCP and further supports EA as a potential therapeutic option for cancer pain in clinic.
Collapse
Affiliation(s)
- Shu-Xin Tian
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Ting Xu
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Ren-Yi Shi
- Department of Acupuncture and Moxibustion, Sanya Traditional Chinese Medicine Hospital, Sanya, 572000, China
| | - Yang-Qian Cai
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Ming-Hui Wu
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Si-Jia Zhen
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Wen Wang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - You Zhou
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Jun-Ying Du
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Jun-Fan Fang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Xiao-Mei Shao
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Bo-Yi Liu
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Yong-Liang Jiang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Xiao-Fen He
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Jian-Qiao Fang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China.,Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310005, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China. .,Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
8
|
Clements ME, Holtslander L, Johnson JR, Johnson RW. Select HDAC Inhibitors Enhance Osteolysis and Bone Metastasis Outgrowth but Can Be Mitigated With Bisphosphonate Therapy. JBMR Plus 2023; 7:e10694. [PMID: 36936362 PMCID: PMC10020917 DOI: 10.1002/jbm4.10694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
Breast cancer has a high predilection for spreading to bone with approximately 70% of patients who succumb to disease harboring bone disseminated tumor cells. Despite this high prevalence, treatments for bone metastatic breast cancer predominantly manage morbidities, including pain and hypercalcemia, rather than reducing bone metastasis incidence or growth. Histone deacetylase inhibitors (HDACi), including panobinostat, entinostat, and valproic acid, typically slow primary tumor progression and are currently in clinical trials for the treatment of many cancers, including primary and metastatic breast cancer, but their effects on bone metastatic disease have not been examined in preclinical models. We report that treatment with the HDACi panobinostat, but not entinostat or valproic acid, significantly reduced trabecular bone volume in tumor-naïve mice, consistent with previous reports of HDACi-induced bone loss. Surprisingly, treatment with entinostat or panobinostat, but not valproic acid, increased tumor burden and incidence in an experimental model of breast cancer bone metastasis. In vitro, multiple HDACi stimulated expression of pro-osteolytic genes in breast tumor cells, suggesting this may be a mechanism by which HDACi fuel tumor growth. In support of this, combination therapy of panobinostat or entinostat with the antiresorptive bisphosphonate zoledronic acid prevented bone metastatic progression; however, the addition of zoledronic acid to panobinostat therapy failed to fully correct panobinostat-induced bone loss. Together these data demonstrate that select HDACi fuel bone metastatic growth and provide potential mechanistic and therapeutic avenues to offset these effects. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Miranda E Clements
- Program in Cancer BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Lauren Holtslander
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Joshua R Johnson
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Rachelle W Johnson
- Program in Cancer BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
9
|
Shah L, Latif A, Williams KJ, Mancuso E, Tirella A. Invasion and Secondary Site Colonization as a Function of In Vitro Primary Tumor Matrix Stiffness: Breast to Bone Metastasis. Adv Healthc Mater 2023; 12:e2201898. [PMID: 36351739 PMCID: PMC11468571 DOI: 10.1002/adhm.202201898] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/08/2022] [Indexed: 11/11/2022]
Abstract
Increased breast tissue stiffness is correlated with breast cancer risk and invasive cancer progression. However, its role in promoting bone metastasis, a major cause of mortality, is not yet understood. It is previously identified that the composition and stiffness of alginate-based hydrogels mimicking normal (1-2 kPa) and cancerous (6-10 kPa) breast tissue govern phenotype of breast cancer cells (including MDA-MB-231) in vitro. Here, to understand the causal effect of primary tumor stiffness on metastatic potential, a new breast-to-bone in vitro model is described. Together with alginate-gelatin hydrogels to mimic breast tissue, 3D printed biohybrid poly-caprolactone (PCL)-composite scaffolds, decellularized following bone-ECM deposition through Saos-2 engraftment, are used to mimic the bone tissue. It is reported that higher hydrogel stiffness results in the increased migration and invasion capacity of MDA-MB 231 cells. Interestingly, increased expression of osteolytic factors PTHrP and IL-6 is observed when MDA-MB-231 cells pre-conditioned in stiffer hydrogels (10 kPa, 3% w/v gelatin) colonize the bone/PCL scaffolds. The new breast-to-bone in vitro models herein described are designed with relevant tissue microenvironmental factors and could emerge as future non-animal technological platforms for monitoring metastatic processes and therapeutic efficacy.
Collapse
Affiliation(s)
- Lekha Shah
- Division of Pharmacy and OptometryFaculty of BiologyMedicine and HealthUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- Present address:
BIOtech Center for Biomedical TechnologiesDepartment of Industrial EngineeringUniversity of TrentoVia delle Regole 101Trento38123Italy
| | - Ayşe Latif
- Division of Pharmacy and OptometryFaculty of BiologyMedicine and HealthUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Kaye J. Williams
- Division of Pharmacy and OptometryFaculty of BiologyMedicine and HealthUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Elena Mancuso
- Nanotechnology and Integrated Bio‐Engineering Centre (NIBEC)Ulster UniversityShore RoadNewtownabbeyBT37 0QBUK
- Present address:
Engineering Ingegneria Informatica S.P.A. ‐ R&D DivisionPiazzale dell'Agricoltura 24Rome00144Italy
| | - Annalisa Tirella
- Division of Pharmacy and OptometryFaculty of BiologyMedicine and HealthUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- BIOtech – Center for Biomedical TechnologiesDepartment of Industrial EngineeringUniversity of TrentoVia delle Regole 101Trento38123Italy
| |
Collapse
|
10
|
Lee MY. Embryonic Programs in Cancer and Metastasis—Insights From the Mammary Gland. Front Cell Dev Biol 2022; 10:938625. [PMID: 35846378 PMCID: PMC9277484 DOI: 10.3389/fcell.2022.938625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is characterized as a reversion of a differentiated cell to a primitive cell state that recapitulates, in many aspects, features of embryonic cells. This review explores the current knowledge of developmental mechanisms that are essential for embryonic mouse mammary gland development, with a particular focus on genes and signaling pathway components that are essential for the induction, morphogenesis, and lineage specification of the mammary gland. The roles of these same genes and signaling pathways in mammary gland or breast tumorigenesis and metastasis are then summarized. Strikingly, key embryonic developmental pathways are often reactivated or dysregulated during tumorigenesis and metastasis in processes such as aberrant proliferation, epithelial-to-mesenchymal transition (EMT), and stem cell potency which affects cellular lineage hierarchy. These observations are in line with findings from recent studies using lineage tracing as well as bulk- and single-cell transcriptomics that have uncovered features of embryonic cells in cancer and metastasis through the identification of cell types, cell states and characterisation of their dynamic changes. Given the many overlapping features and similarities of the molecular signatures of normal development and cancer, embryonic molecular signatures could be useful prognostic markers for cancer. In this way, the study of embryonic development will continue to complement the understanding of the mechanisms of cancer and aid in the discovery of novel therapeutic targets and strategies.
Collapse
|
11
|
Almadori G, Coli A, De Corso E, Mele DA, Settimi S, Di Cintio G, Brigato F, Scannone D, Lauriola L, Ranelletti FO. Parathyroid hormone-related peptide and parathyroid hormone-related peptide receptor type 1 in locally advanced laryngeal cancer as prognostic indicators of relapse and survival. BMC Cancer 2022; 22:704. [PMID: 35761298 PMCID: PMC9235225 DOI: 10.1186/s12885-022-09748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Parathyroid hormone-related peptide (PTHrP) overexpression and poor patient outcome have been reported for many human tumors, but no studies are available in laryngeal cancer. Therefore, we studied the expression of PTHrP and its receptor, parathyroid hormone-related peptide receptor type 1 (PTH1R), in primary locally advanced laryngeal squamous cell carcinomas (LALSCC) also in relation to the clinical outcome of patients. Methods We conducted a retrospective exploratory study, using immunohistochemistry, on PTHrP, PTH1R and HER1 expressions in LALSCC of 66 patients treated with bio-radiotherapy with cetuximab. Results The expressions of PTHrP and PTH1R in LALSCC were associated with the degree of tumor differentiation (p = 0.01 and 0.04, respectively). Poorly differentiated tumors, with worse prognosis, expressed PTHrP at nuclear level and were PTH1R negative. PTHrP and PTH1R were expressed at cytoplasmic level in normal larynx epithelium and more differentiated laryngeal cancer cells, suggesting an autocrine/paracrine role of PTHrP in squamous cell differentiation of well differentiated tumors with good prognosis. Eighty-one percent HER1 positive tumors expressed PTHrP (p < 0.0001), mainly at nuclear level, consistent with the known up-regulation of PTHrP gene by HER1 signaling. In multivariable analyses, patients with PTHrP positive tumors had a higher relative risk of relapse (HR = 5.49; CI 95% = 1.62–22.24; p = 0.006) and survival (HR = 8.21; CI 95% = 1.19–105.00; p = 0.031) while those with PTH1R positive tumors showed a lower relative risk of relapse (HR = 0.18; CI 95% = 0.04–0.62; p = 0.002) and survival (HR = 0.18; CI 95% = 0.04–0.91; p = 0.029). Conclusions In LALSCC nuclear PTHrP and absence of PTH1R expressions could be useful in predicting response and/or resistance to cetuximab in combined therapies, contributing to an aggressive behavior of tumor cells downstream to HER1. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09748-1.
Collapse
|
12
|
Parathyroid Hormone-Related Peptide (PTHrP): Evaluation of Pediatric, Covariate-Stratified Reference Intervals. CHILDREN 2022; 9:children9060896. [PMID: 35740833 PMCID: PMC9221726 DOI: 10.3390/children9060896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Parathyroid hormone-related peptide (PTHrP) is expressed at a wide range of sites in the body and performs different functions including vasodilation, relaxation of smooth muscle cells, and regulation of bone development. PTHrP also mediates hypercalcemia related to neoplastic diseases. However, reference ranges specific method and age were not evaluated. We establish PTHrP reference ranges in apparently healthy, normocalcemic, normophosphatemic pediatric individuals. In this observational prospective, study we measured PTHrP in serum from 178 samples (55.06% male 44.94% female) from apparently healthy pediatric subjects [median age 10 years (range 1–18)] subunit ELISA method The statistical analysis performed provided for the calculation of the 95% reference interval, right-sided, with a non-parametric percentile method (CLSI C28-A3). Upper reference limits (URL) for PTHrP was 2.89 ng/mL (2.60 to 3.18; 90% CI). No significant differences were found between the median PTHrP concentrations in males vs females and in the age range categories selected. Comprehensive normal values for PTHrP are indispensable to the assessment of calcium phosphorus dysfunction in children. Severe hypercalcemia is a rare, but clinically significant condition, in infancy and childhood. PTHrP values higher than the reference value may help to distinguish the hypercalcemic product of a malignancy, paraneoplastic syndromes mediated by PTHrP, from other causes.
Collapse
|
13
|
Li J, Camirand A, Zakikhani M, Sellin K, Guo Y, Luan X, Mihalcioiu C, Kremer R. Parathyroid Hormone-Related Protein Inhibition Blocks Triple-Negative Breast Cancer Expansion in Bone Through Epithelial to Mesenchymal Transition Reversal. JBMR Plus 2022; 6:e10587. [PMID: 35720668 PMCID: PMC9189913 DOI: 10.1002/jbm4.10587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP) plays a major role in skeletal metastasis but its action mechanism has not been fully defined. We previously demonstrated the crucial importance of PTHrP in promoting mammary tumor initiation, growth, and metastasis in a mouse model with a mammary epithelium-targeted Pthlh gene ablation. We demonstrate here a novel mechanism for bone invasion involving PTHrP induction of epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs) regulation. Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated Pthlh gene ablation was used to study EMT markers, phenotype, and invasiveness in two triple-negative breast cancer (TNBC) cell types (established MDA-MB-231 and patient-derived PT-TNBC cells). In vitro, Pthlh ablation in TNBC cells reduced EMT markers, mammosphere-forming ability, and CD44high/CD24low cells ratio. In vivo, cells were injected intratibially into athymic nude mice, and therapeutic treatment with our anti-PTHrP blocking antibody was started 2 weeks after skeletal tumors were established. In vivo, compared to control, lytic bone lesion from Pthlh -ablated cells decreased significantly over 2 weeks by 27% for MDA-MB-231 and by 75% for PT-TNBC-injected mice (p < 0.001). Micro-CT (μCT) analyses also showed that antibody therapy reduced bone lytic volume loss by 52% and 48% for non-ablated MDA-MB-231 and PT-TNBC, respectively (p < 0.05). Antibody therapy reduced skeletal tumor burden by 45% and 87% for non-ablated MDA-MB-231 and PT-TNBC, respectively (p < 0.002) and caused a significant decrease of CSC/EMT markers ALDH1, vimentin, and Slug, and an increase in E-cadherin in bone lesions. We conclude that PTHrP is a targetable EMT molecular driver and suggest that its pharmacological blockade can provide a potential therapeutic approach against established TNBC-derived skeletal lesions. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jiarong Li
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Anne Camirand
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Mahvash Zakikhani
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Karine Sellin
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Yubo Guo
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
- Third Affiliated HospitalBeijing University of Chinese MedicineBeijingChina
| | - XiaoRui Luan
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
- Department of Genetics, School of MedicineZhejiang UniversityHangzhouChina
| | - Catalin Mihalcioiu
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Richard Kremer
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| |
Collapse
|
14
|
Fujita I, Watanabe H, Ikegami K, Imafuku T, Ichimizu S, Chikamatsu M, Kobayashi K, Tanaka R, Yamada K, Maeda H, Maruyama T. Involvement of the Parathyroid Hormone-Related Protein on Changes in the CYP3A Expression in Cancer Cachexia. Mol Pharm 2021; 18:4322-4330. [PMID: 34734526 DOI: 10.1021/acs.molpharmaceut.1c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parathyroid hormone-related protein (PTHrP), which is secreted from a tumor, contributes to the progression of cachexia, a condition that is observed in half of all cancer patients. Although drug clearance was reported to decrease in patients with cancer cachexia, the details have not been clarified. The present study reports on an investigation of whether PTHrP is involved in the alternation of drug metabolism in cases of cancer cachexia. Cancer cachexia model rats with elevated serum PTHrP levels showed a significant decrease in hepatic and intestinal CYP3A2 protein expression. When midazolam, a CYP3A substrate drug, was administered intravenously or orally to the cancer cachexia rats, its area under the curve (AUC) was increased by about 2 and 5 times, as compared to the control group. Accordingly, the bioavailability of midazolam was increased by about 3 times, thus enhancing its pharmacological effect. In vitro experiments using HepG2 cells and Caco-2 cells showed that the addition of serum from cancer cachexia rats or active PTHrP (1-34) to each cell resulted in a significant decrease in the expression of CYP3A4 mRNA. Treatment with a cell-permeable cAMP analog also resulted in a decreased CYP3A4 expression. Pretreatment with protein kinase A (PKA), protein kinase C (PKC), and nuclear factor-kappa B (NF-κB) inhibitors recovered the decrease in CYP3A4 expression that was induced by PTHrP (1-34). These results suggest that PTHrP suppresses CYP3A expression via the cAMP/PKA/PKC/NF-κB pathway. Therefore, it is likely that PTHrP would be involved in the changes in drug metabolism observed in cancer cachexia.
Collapse
Affiliation(s)
- Issei Fujita
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Komei Ikegami
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shota Ichimizu
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mayuko Chikamatsu
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kazuki Kobayashi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryusei Tanaka
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Koichi Yamada
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
15
|
Cacciapuoti F, Vetrano E, Cacciapuoti F. Left atrial invasion of a lung cancer: a case report. Monaldi Arch Chest Dis 2021; 92. [PMID: 34865463 DOI: 10.4081/monaldi.2021.2098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Lung cancer is the leading neoplastic form worldwide for both incidence and mortality and represents the largest contributor to new cancer diagnosis. Cardiac extensions of a pulmonary neoplasm are rare and dramatically under-diagnosed because of the extreme variability of clinical presentation and frequently are expression of an advanced-stage primary lung cancer. The invasion often happens through pulmonary veins in absence of a clear respiratory impairment. Symptoms related to the cardiac involvement as the first presentation of a malignant pulmonary neoplasm are very uncommon and related with poor outcome. Here we present a case of invasion of the left atrium of a pulmonary neoplasm with initial cardiac manifestations and a laboratory finding of hypercalcemia.
Collapse
Affiliation(s)
| | - Erica Vetrano
- Post-graduate School of Internal Medicine "L. Vanvitelli" University, Naples.
| | | |
Collapse
|