1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
2
|
Kumar M, Jalota A, Sahu SK, Haque S. Therapeutic antibodies for the prevention and treatment of cancer. J Biomed Sci 2024; 31:6. [PMID: 38216921 PMCID: PMC10787459 DOI: 10.1186/s12929-024-00996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
The developments of antibodies for cancer therapeutics have made remarkable success in recent years. There are multiple factors contributing to the success of the biological molecule including origin of the antibody, isotype, affinity, avidity and mechanism of action. With better understanding of mechanism of cancer progression and immune manipulation, recombinant formats of antibodies are used to develop therapeutic modalities for manipulating the immune cells of patients by targeting specific molecules to control the disease. These molecules have been successful in minimizing the side effects instead caused by small molecules or systemic chemotherapy but because of the developing therapeutic resistance against these antibodies, combination therapy is thought to be the best bet for patient care. Here, in this review, we have discussed different aspects of antibodies in cancer therapy affecting their efficacy and mechanism of resistance with some relevant examples of the most studied molecules approved by the US FDA.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Akansha Jalota
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| | - Sushil Kumar Sahu
- Department of Zoology, Siksha-Bhavana, Visva-Bharati, Santiniketan, West Bengal, India
| | - Shabirul Haque
- Center of Autoimmune Musculoskeletal and Hematopoietic Disease, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
3
|
Jin X, Zhang W, Han Q, Li Q, Zong J, Li X, Wang C, Jiang H, Yu G, Li G. Serum-based Comprehensive N-Glycans Profiling Analysis in Different Gastric Disease Stages by Porous Graphitic Carbon Liquid Chromatography-Mass Spectrometry Associated With Potential Marker Discovery. In Vivo 2024; 38:147-159. [PMID: 38148046 PMCID: PMC10756461 DOI: 10.21873/invivo.13421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM N-glycans are potential serum biomarkers due to their aberrant structure and abundance alteration during disease progression. Few studies have been associated with relative quantitative N-glycans profiling during different gastric disease stages. In this study, we conducted an investigation on the profiling of N-glycans in patients with gastric disease, as well as in healthy controls. MATERIALS AND METHODS In this study, the porous graphitization carbon chromatography-high resolution Fourier transform mass spectrometry (PGC-FTMS) method was applied to assess comprehensive N-glycans profiling in patients at different stages of gastric disease, including gastritis, atrophic gastritis, gastric ulcer, gastric polyps, and gastric cancer. RESULTS A total of 45 N-glycans (relative abundance >0.1%) were detected, and 9 N-glycans were found to be potential biomarkers for gastric disease detection. Along with the progression of gastric disease, the abundance of sialylated N-glycans increased, while that of core-fucosylated N-glycans decreased. Multivariate statistical analysis demonstrated that N-glycans profiling between gastritis and healthy controls had significant differences. The characteristic N-glycans distinguished gastric cancer from healthy controls, which had strong clinical diagnostic value. CONCLUSION The relative quantitative profile of N-glycans in different gastric disease stages was revealed and serum N-glycans are proposed for distinguishing gastric disease stages in clinical application.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, P.R. China
| | - Weibin Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, P.R. China
| | - Qing Han
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, P.R. China
| | - Qinying Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, P.R. China
| | - Jinbao Zong
- The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Xiaoyu Li
- The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Chen Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, P.R. China
| | - Hao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, P.R. China;
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, P.R. China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, P.R. China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, P.R. China
| | - Guoyun Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, P.R. China;
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, P.R. China
| |
Collapse
|
4
|
Zhang ZJ, Wang HF, Lian TY, Zhou YP, Xu XQ, Guo F, Wei YP, Li JY, Sun K, Liu C, Pan LR, Ren M, Nie L, Dai HL, Jing ZC. Human Plasma IgG N-Glycome Profiles Reveal a Proinflammatory Phenotype in Chronic Thromboembolic Pulmonary Hypertension. Hypertension 2023; 80:1929-1939. [PMID: 37449418 DOI: 10.1161/hypertensionaha.123.21408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The pathological mechanism of chronic thromboembolic pulmonary hypertension (CTEPH) is not fully understood, and inflammation has been reported to be one of its etiological factors. IgG regulates systemic inflammatory homeostasis, primarily through its N-glycans. Little is known about IgG N-glycosylation in CTEPH. We aimed to map the IgG N-glycome of CTEPH to provide new insights into its pathogenesis and discover novel markers and therapies. METHODS We characterized the plasma IgG N-glycome of patients with CTEPH in a discovery cohort and validated our results in an independent validation cohort using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Thereafter, we correlated IgG N-glycans with clinical parameters and circulating inflammatory cytokines in patients with CTEPH. Furthermore, we determined IgG N-glycan quantitative trait loci in CTEPH to reveal partial mechanisms underlying glycan changes. RESULTS Decreased IgG galactosylation representing a proinflammatory phenotype was found in CTEPH. The distribution of IgG galactosylation showed a strong association with NT-proBNP (N-terminal pro-B-type natriuretic peptide) in CTEPH. In line with the glycomic findings, IgG pro-/anti-inflammatory N-glycans correlated well with a series of inflammatory markers and gene loci that have been reported to be involved in the regulation of these glycans or inflammatory immune responses. CONCLUSIONS This is the first study to reveal the full signature of the IgG N-glycome of a proinflammatory phenotype and the genes involved in its regulation in CTEPH. Plasma IgG galactosylation may be useful for evaluating the inflammatory state in patients with CTEPH; however, this requires further validation. This study improves our understanding of the mechanisms underlying CTEPH inflammation from the perspective of glycomics.
Collapse
Affiliation(s)
- Ze-Jian Zhang
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Medical Research Center (Z.-J.Z., T.-Y.L., K.S.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Fang Wang
- Department of Biochemistry and Molecular Biology, the School of Basic Medicine Sciences, Hebei Medical University, Shijiazhuang, China (H.-F.W., L.N.)
| | - Tian-Yu Lian
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Medical Research Center (Z.-J.Z., T.-Y.L., K.S.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Ping Zhou
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xi-Qi Xu
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Guo
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun-Peng Wei
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Yi Li
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Sun
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Medical Research Center (Z.-J.Z., T.-Y.L., K.S.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Liu
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu-Rong Pan
- Global Health Drug Discovery Institute, Beijing, China (L.-R.P.)
| | - Ming Ren
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, China (M.R.)
| | - Lei Nie
- Department of Biochemistry and Molecular Biology, the School of Basic Medicine Sciences, Hebei Medical University, Shijiazhuang, China (H.-F.W., L.N.)
| | - Hai-Long Dai
- Department of Cardiology, Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan'an Affiliated Hospital of Kunming Medical University, China (H.-L.D.)
| | - Zhi-Cheng Jing
- Department of Cardiology (Z.-J.Z., T.-Y.L., Y.-P.Z., X.-Q.X., F.G., Y.-P.W., J.-Y.L., K.S., C.L., Z.-C.J.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Haslund-Gourley BS, Wigdahl B, Comunale MA. IgG N-glycan Signatures as Potential Diagnostic and Prognostic Biomarkers. Diagnostics (Basel) 2023; 13:1016. [PMID: 36980324 PMCID: PMC10047871 DOI: 10.3390/diagnostics13061016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
IgG N-glycans are an emerging source of disease-specific biomarkers. Over the last decade, the continued development of glycomic databases and the evolution of glyco-analytic methods have resulted in increased throughput, resolution, and sensitivity. IgG N-glycans promote adaptive immune responses through antibody-dependent cellular cytotoxicity (ADCC) and complement activation to combat infection or cancer and promote autoimmunity. In addition to the functional assays, researchers are examining the ability of protein-specific glycosylation to serve as biomarkers of disease. This literature review demonstrates that IgG N-glycans can discriminate between healthy controls, autoimmune disease, infectious disease, and cancer with high sensitivity. The literature also indicates that the IgG glycosylation patterns vary across disease state, thereby supporting their role as specific biomarkers. In addition, IgG N-glycans can be collected longitudinally from patients to track treatment responses or predict disease reoccurrence. This review focuses on IgG N-glycan profiles applied as diagnostics, cohort discriminators, and prognostics. Recent successes, remaining challenges, and upcoming approaches are critically discussed.
Collapse
Affiliation(s)
- Benjamin S. Haslund-Gourley
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Mary Ann Comunale
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
6
|
Gu Y, Duan B, Sha J, Zhang R, Fan J, Xu X, Zhao H, Niu X, Geng Z, Gu J, Huang B, Ren S. Serum IgG N-glycans enable early detection and early relapse prediction of colorectal cancer. Int J Cancer 2023; 152:536-547. [PMID: 36121650 DOI: 10.1002/ijc.34298] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 02/01/2023]
Abstract
Colorectal cancer (CRC) develops mainly from colorectal advanced adenomas (AA), which are considered precancerous lesions. Novel early diagnostic biomarkers are urgently needed to distinguish CRC and AA from healthy control (HC). Alternative glycosylation of serum IgG has been shown to be closely associated with CRC. We aimed to explore the potential of IgG N-glycan as biomarkers in the early differential diagnosis of CRC. The study population was strictly matched to the exclusion criteria process. Serum IgG N-glycan profiles were analyzed by a robust and reliable relative quantitative method based on ultra-performance liquid chromatography (UPLC). Relative quantification and classification performance of IgG N-glycans were evaluated by Mann-Whitney U tests and ROC curve based on directly detected and derived glycan traits, respectively. Six and 14 directly detected glycan traits were significantly changed in AA and CRC, respectively, compared with HC. GP1 and GP3 were able to accurately distinguish AA from HC for early precancerous lesions screening. GP4 and GP14 provided a high value in discriminating CRC from HC. A novel combined index named GlycoF, including GP1, GP3, GP4, GP14 and CEA was developed to provide a potential early diagnostic biomarker in discriminating simultaneously AA (AUC = 0.847) and CRC (AUC = 0.844) from HC. GlycoF also demonstrated a superior CRC detection rate across CRC all stages and conspicuous prediction ability of risk of relapse. Serum IgG N-glycans analysis provided powerful early screening biomarkers that can efficiently differentiate CRC and AA from HC.
Collapse
Affiliation(s)
- Yong Gu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bensong Duan
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jichen Sha
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Rongrong Zhang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiteng Fan
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoyan Xu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huijuan Zhao
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoyun Niu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhi Geng
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianxin Gu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ben Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shifang Ren
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Zhang Z, Cao Z, Liu R, Li Z, Wu J, Liu X, Wu M, Xu X, Liu Z. Nomograms Based on Serum N-glycome for Diagnosis of Papillary Thyroid Microcarcinoma and Prediction of Lymph Node Metastasis. Curr Oncol 2022; 29:6018-6034. [PMID: 36135043 PMCID: PMC9497917 DOI: 10.3390/curroncol29090474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Non-invasive biomarkers for the diagnosis and prognosis of papillary thyroid microcarcinoma (PTMC) are still urgently needed. We aimed to characterize the N-glycome of PTMC, and establish nomograms for the diagnosis of PTMC and the prediction of lymph node metastasis (LNM). N-glycome of PTMC (LNM vs. non-LNM, capsular invasion (CI) vs. non-CI (NCI)) and matched healthy controls (HC) were quantitatively analyzed based on mass spectrometry. N-glycan traits associated with PTMC/LNM were used to create binomial logistic regression models and were visualized as nomograms. We found serum N-glycome differed between PTMC and HC in high-mannose, complexity, fucosylation, and bisection, of which, four N-glycan traits (TM, CA1, CA4, and A2Fa) were significantly associated with PTMC. The nomogram based on four traits achieved good performance for the identification of PTMC. Two N-glycan traits (CA4 and A2F0S0G) showed strong associations with LNM. The nomogram based on two traits showed relatively good performance in predicting LNM. We also found differences between CI and NCI in several N-glycan traits, which were not the same as that associated with LNM. This study reported serum N-glycosylation signatures of PTMC for the first time. Nomograms constructed from aberrant glycans could be useful tools for PTMC diagnosis and stratification.
Collapse
Affiliation(s)
- Zejian Zhang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhen Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Rui Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zepeng Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianqiang Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoli Liu
- Department of Hernia and Abdominal Wall Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiequn Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence: (X.X.); (Z.L.); Tel.: +86-010-69152620 (X.X.); +86-010-69152620 (Z.L.)
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence: (X.X.); (Z.L.); Tel.: +86-010-69152620 (X.X.); +86-010-69152620 (Z.L.)
| |
Collapse
|
8
|
Cao Z, Zhang Z, Liu R, Wu M, Li Z, Xu X, Liu Z. Serum Linkage-Specific Sialylation Changes Are Potential Biomarkers for Monitoring and Predicting the Recurrence of Papillary Thyroid Cancer Following Thyroidectomy. Front Endocrinol (Lausanne) 2022; 13:858325. [PMID: 35574008 PMCID: PMC9098836 DOI: 10.3389/fendo.2022.858325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Although papillary thyroid cancer (PTC) could remain indolent, the recurrence rates after thyroidectomy are approximately 20%. There are currently no accurate serum biomarkers that can monitor and predict recurrence of PTC after thyroidectomy. This study aimed to explore novel serum biomarkers that are relevant to the monitoring and prediction of recurrence in PTC using N-glycomics. METHODS A high-throughput quantitative strategy based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to obtain serum protein N-glycomes of well-differentiated PTC, postoperative surveillance (PS), postoperative recurrence (PR), and matched healthy controls (HC) including linkage-specific sialylation information. RESULTS Serum N-glycan traits were found to differ among PTC, PS, PR, and HC. The differentially expressed N-glycan traits consisting of sixteen directly detected glycan traits and seven derived glycan traits indicated the response to surgical resection therapy and the potential for monitoring the PTC. Two glycan traits representing the levels of linkage-specific sialylation (H4N3F1L1 and H4N6F1E1) which were down-regulated in PS and up-regulated in PR showed high potential as biomarkers for predicting the recurrence after thyroidectomy. CONCLUSIONS To the best of our knowledge, this study provides comprehensive evaluations of the serum N-glycomic changes in patients with PS or PR for the first time. Several candidate serum N-glycan biomarkers including the linkage-specific sialylation have been determined, some of which have potential in the prediction of recurrence in PTC, and others of which can help to explore and monitor the response to initial surgical resection therapy. The findings enhanced the comprehension of PTC.
Collapse
Affiliation(s)
- Zhen Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zejian Zhang
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zepeng Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiequn Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiequn Xu, ; Ziwen Liu,
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiequn Xu, ; Ziwen Liu,
| |
Collapse
|