1
|
Razavi Z, Soltani M, Souri M, van Wijnen AJ. CRISPR innovations in tissue engineering and gene editing. Life Sci 2024; 358:123120. [PMID: 39426588 DOI: 10.1016/j.lfs.2024.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
The CRISPR/Cas9 system is a powerful tool for genome editing, utilizing the Cas9 nuclease and programmable single guide RNA (sgRNA). However, the Cas9 nuclease activity can be disabled by mutation, resulting in catalytically deactivated Cas9 (dCas9). By combining the customizable sgRNA with dCas9, researchers can inhibit specific gene expression (CRISPR interference, CRISPRi) or activate the expression of a target gene (CRISPR activation, CRISPRa). In this review, we present the principles and recent advancements of these CRISPR technologies, as well as their delivery vectors. We also explore their applications in stem cell engineering and regenerative medicine, with a focus on in vitro stem cell fate manipulation and in vivo treatments. These include the prevention of retinal and muscular degeneration, neural regeneration, bone regeneration, cartilage tissue engineering, and the treatment of blood, skin, and liver diseases. Furthermore, we discuss the challenges of translating CRISPR technologies into regenerative medicine and provide future perspectives. Overall, this review highlights the potential of CRISPR in advancing regenerative medicine and offers insights into its application in various areas of research and therapy.
Collapse
Affiliation(s)
- ZahraSadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada; Centre for Sustainable Business, International Business University, Toronto, Canada.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
2
|
Khorshid Sokhangouy S, Alizadeh F, Lotfi M, Sharif S, Ashouri A, Yoosefi Y, Bozorg Qomi S, Abbaszadegan MR. Recent advances in CRISPR-Cas systems for colorectal cancer research and therapeutics. Expert Rev Mol Diagn 2024; 24:677-702. [PMID: 39132997 DOI: 10.1080/14737159.2024.2388777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/28/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Colon cancer, ranked as the fourth leading global cause of cancer death, exhibits a complex progression marked by genetic variations. Over the past decade, the utilization of diverse CRISPR systems has propelled accelerated research into colorectal cancer (CRC) treatment. AREAS COVERED CRISPR/Cas9, a key player in this research, identifies new oncogenes, tumor suppressor genes (TSGs), and drug-resistance genes. Additionally, it facilitates the construction of experimental models, conducts genome-wide library screening, and develops new therapeutic targets, especially for targeted knockout in vivo or molecular targeted drug delivery, contributing to personalized treatments and significantly enhancing the care of colon cancer patients. In this review, we provide insights into the mechanism of the CRISPR/Cas9 system, offering a comprehensive exploration of its applications in CRC, spanning screening, modeling, gene functions, diagnosis, and gene therapy. While acknowledging its transformative potential, the article highlights the challenges and limitations of CRISPR systems. EXPERT OPINION The application of CRISPR/Cas9 in CRC research provides a promising avenue for personalized treatments. Its potential for identifying key genes and enabling experimental models and genome-wide screening enhances patient care. This review underscores the significance of CRISPR-Cas9 gene editing technology across basic research, diagnosis, and the treatment landscape of colon cancer.
Collapse
Affiliation(s)
| | - Farzaneh Alizadeh
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Sharif
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ashouri
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Yoosefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Bozorg Qomi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Sahranavard T, Mehrabadi S, Pourali G, Maftooh M, Akbarzade H, Hassanian SM, Mobarhan MG, Ferns GA, Khazaei M, Avan A. The Potential Therapeutic Applications of CRISPR/Cas9 in Colorectal Cancer. Curr Med Chem 2024; 31:5768-5778. [PMID: 37724673 DOI: 10.2174/0929867331666230915103707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023]
Abstract
The application of the CRISPR-associated nuclease 9 (Cas9) system in tumor studies has led to the discovery of several new treatment strategies for colorectal cancer (CRC), including the recognition of novel target genes, the construction of animal mass models, and the identification of genes related to chemotherapy resistance. CRISPR/Cas9 can be applied to genome therapy for CRC, particularly regarding molecular-targeted medicines and suppressors. This review summarizes some aspects of using CRISPR/- Cas9 in treating CRC. Further in-depth and systematic research is required to fully realize the potential of CRISPR/Cas9 in CRC treatment and integrate it into clinical practice.
Collapse
Affiliation(s)
- Toktam Sahranavard
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Mehrabadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City QLD 4000, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
4
|
Du Y, Liu Y, Hu J, Peng X, Liu Z. CRISPR/Cas9 systems: Delivery technologies and biomedical applications. Asian J Pharm Sci 2023; 18:100854. [PMID: 38089835 PMCID: PMC10711398 DOI: 10.1016/j.ajps.2023.100854] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2024] Open
Abstract
The emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome-editing system has brought about a significant revolution in the realm of managing human diseases, establishing animal models, and so on. To fully harness the potential of this potent gene-editing tool, ensuring efficient and secure delivery to the target site is paramount. Consequently, developing effective delivery methods for the CRISPR/Cas9 system has become a critical area of research. In this review, we present a comprehensive outline of delivery strategies and discuss their biomedical applications in the CRISPR/Cas9 system. We also provide an in-depth analysis of physical, viral vector, and non-viral vector delivery strategies, including plasmid-, mRNA- and protein-based approach. In addition, we illustrate the biomedical applications of the CRISPR/Cas9 system. This review highlights the key factors affecting the delivery process and the current challenges facing the CRISPR/Cas9 system, while also delineating future directions and prospects that could inspire innovative delivery strategies. This review aims to provide new insights and ideas for advancing CRISPR/Cas9-based delivery strategies and to facilitate breakthroughs in biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Yimin Du
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiaxin Hu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Molecular Imaging Research Center of Central South University, Changsha 410008, China
| |
Collapse
|
5
|
Chang YC, Wu CZ, Cheng CW, Chen JS, Chang LC. Redrawing Urokinase Receptor (uPAR) Signaling with Cancer Driver Genes for Exploring Possible Anti-Cancer Targets and Drugs. Pharmaceuticals (Basel) 2023; 16:1435. [PMID: 37895906 PMCID: PMC10610195 DOI: 10.3390/ph16101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
During tumorigenesis, urokinase (uPA) and uPA receptor (uPAR) play essential roles in mediating pathological progression in many cancers. To understand the crosstalk between the uPA/uPAR signaling and cancer, as well as to decipher their cellular pathways, we proposed to use cancer driver genes to map out the uPAR signaling. In the study, an integrated pharmaceutical bioinformatics approach that combined modulator identification, driver gene ontology networking, protein targets prediction and networking, pathway analysis and uPAR modulator screening platform construction was employed to uncover druggable targets in uPAR signaling for developing a novel anti-cancer modality. Through these works, we found that uPAR signaling interacted with 10 of 21 KEGG cancer pathways, indicating the important role of uPAR in mediating intracellular cancerous signaling. Furthermore, we verified that receptor tyrosine kinases (RTKs) and ribosomal S6 kinases (RSKs) could serve as signal hubs to relay uPAR-mediated cellular functions on cancer hallmarks such as angiogenesis, proliferation, migration and metastasis. Moreover, we established an in silico virtual screening platform and a uPAR-driver gene pair rule for identifying potential uPAR modulators to combat cancer. Altogether, our results not only elucidated the complex networking between uPAR modulation and cancer but also provided a paved way for developing new chemical entities and/or re-positioning clinically used drugs against cancer.
Collapse
Affiliation(s)
- Yu-Ching Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City 114201, Taiwan;
| | - Chung-Ze Wu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110301, Taiwan;
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 110301, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 114201, Taiwan
| | - Jin-Shuen Chen
- Department of Education and Research, Kaohsiung Veteran General Hospital, Kaohsiung City 813414, Taiwan
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114202, Taiwan
| | - Li-Chien Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City 114201, Taiwan;
- School of Pharmacy, National Defense Medical Center, Taipei City 114201, Taiwan
| |
Collapse
|
6
|
Meng H, Nan M, Li Y, Ding Y, Yin Y, Zhang M. Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Front Endocrinol (Lausanne) 2023; 14:1148412. [PMID: 37020597 PMCID: PMC10067930 DOI: 10.3389/fendo.2023.1148412] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Colon cancer is the fourth leading cause of cancer death worldwide, and its progression is accompanied by a complex array of genetic variations. CRISPR/Cas9 can identify new drug-resistant or sensitive mutations in colon cancer, and can use gene editing technology to develop new therapeutic targets and provide personalized treatments, thereby significantly improving the treatment of colon cancer patients. CRISPR/Cas9 systems are driving advances in biotechnology. RNA-directed Cas enzymes have accelerated the pace of basic research and led to clinical breakthroughs. This article reviews the rapid development of CRISPR/Cas in colon cancer, from gene editing to transcription regulation, gene knockout, genome-wide CRISPR tools, therapeutic targets, stem cell genomics, immunotherapy, metabolism-related genes and inflammatory bowel disease. In addition, the limitations and future development of CRISPR/Cas9 in colon cancer studies are reviewed. In conclusion, this article reviews the application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Hui Meng
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Mingzhi Zhang, ; Hui Meng,
| | - Manman Nan
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yizhen Li
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Ding
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhui Yin
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Mingzhi Zhang, ; Hui Meng,
| |
Collapse
|
7
|
Chira S, Nutu A, Isacescu E, Bica C, Pop L, Ciocan C, Berindan-Neagoe I. Genome Editing Approaches with CRISPR/Cas9 for Cancer Treatment: Critical Appraisal of Preclinical and Clinical Utility, Challenges, and Future Research. Cells 2022; 11:cells11182781. [PMID: 36139356 PMCID: PMC9496708 DOI: 10.3390/cells11182781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing burden on human malignant diseases became a major concern for healthcare practitioners, that must deal with tumor relapse and the inability to efficiently treat metastasis, in addition to side effects. Throughout the decades, many therapeutic strategies have been employed to improve the clinical outcomes of cancer patients and great efforts have been made to develop more efficient and targeted medicines. The malignant cell is characterized by genetic and epigenetic modifications, therefore targeting those specific drivers of carcinogenesis is highly desirable. Among the genome editing technologies, CRISPR/Cas9 stood as a promising candidate for cancer treatment alternatives, due to its low complexity design. First described as a defense mechanism of bacteria against invading foreign DNA, later it was shown that CRISPR components can be engineered to target specific DNA sequences in a test tube, a discovery that was awarded later with the Nobel Prize in chemistry for its rapid expansion as a reliable genome editing tool in many fields of research, including medicine. The present paper aims of describing CRISPR/Cas9 potential targets for malignant disorders, and the approaches used for achieving this goal. Aside from preclinical studies, we also present the clinical trials that use CRISPR-based technology for therapeutic purposes of cancer. Finally, a summary of the presented studies adds a more focused view of the therapeutic value CRISPR/Cas9 holds and the associated shortcomings.
Collapse
|
8
|
Mitra S, Sarker J, Mojumder A, Shibbir TB, Das R, Emran TB, Tallei TE, Nainu F, Alshahrani AM, Chidambaram K, Simal-Gandara J. Genome editing and cancer: How far has research moved forward on CRISPR/Cas9? Biomed Pharmacother 2022; 150:113011. [PMID: 35483191 DOI: 10.1016/j.biopha.2022.113011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer accounted for almost ten million deaths worldwide in 2020. Metastasis, characterized by cancer cell invasion to other parts of the body, is the main cause of cancer morbidity and mortality. Therefore, understanding the molecular mechanisms of tumor formation and discovery of potential drug targets are of great importance. Gene editing techniques can be used to find novel drug targets and study molecular mechanisms. In this review, we describe how popular gene-editing methods such as CRISPR/Cas9, TALEN and ZFNs work, and, by comparing them, we demonstrate that CRISPR/Cas9 has superior efficiency and precision. We further provide an overview of the recent applications of CRISPR/Cas9 to cancer research, focusing on the most common cancers such as breast cancer, lung cancer, colorectal cancer, and prostate cancer. We describe how these applications will shape future research and treatment of cancer, and propose new ways to overcome current challenges.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Joyatry Sarker
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Anik Mojumder
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tasmim Bintae Shibbir
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh.
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
9
|
Alfano D, Franco P, Stoppelli MP. Modulation of Cellular Function by the Urokinase Receptor Signalling: A Mechanistic View. Front Cell Dev Biol 2022; 10:818616. [PMID: 35493073 PMCID: PMC9045800 DOI: 10.3389/fcell.2022.818616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycosyl-phosphatidyl-inositol anchored (GPI) membrane protein. The uPAR primary ligand is the serine protease urokinase (uPA), converting plasminogen into plasmin, a broad spectrum protease, active on most extracellular matrix components. Besides uPA, the uPAR binds specifically also to the matrix protein vitronectin and, therefore, is regarded also as an adhesion receptor. Complex formation of the uPAR with diverse transmembrane proteins, including integrins, formyl peptide receptors, G protein-coupled receptors and epidermal growth factor receptor results in intracellular signalling. Thus, the uPAR is a multifunctional receptor coordinating surface-associated pericellular proteolysis and signal transduction, thereby affecting physiological and pathological mechanisms. The uPAR-initiated signalling leads to remarkable cellular effects, that include increased cell migration, adhesion, survival, proliferation and invasion. Although this is beyond the scope of this review, the uPA/uPAR system is of great interest to cancer research, as it is associated to aggressive cancers and poor patient survival. Increasing evidence links the uPA/uPAR axis to epithelial to mesenchymal transition, a highly dynamic process, by which epithelial cells can convert into a mesenchymal phenotype. Furthermore, many reports indicate that the uPAR is involved in the maintenance of the stem-like phenotype and in the differentiation process of different cell types. Moreover, the levels of anchor-less, soluble form of uPAR, respond to a variety of inflammatory stimuli, including tumorigenesis and viral infections. Finally, the role of uPAR in virus infection has received increasing attention, in view of the Covid-19 pandemics and new information is becoming available. In this review, we provide a mechanistic perspective, via the detailed examination of consolidated and recent studies on the cellular responses to the multiple uPAR activities.
Collapse
|
10
|
Zhai BT, Tian H, Sun J, Zou JB, Zhang XF, Cheng JX, Shi YJ, Fan Y, Guo DY. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. J Transl Med 2022; 20:135. [PMID: 35303878 PMCID: PMC8932206 DOI: 10.1186/s12967-022-03329-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is an attractive target for the treatment of cancer, because it is expressed at low levels in healthy tissues but at high levels in malignant tumours. uPAR is closely related to the invasion and metastasis of malignant tumours, plays important roles in the degradation of extracellular matrix (ECM), tumour angiogenesis, cell proliferation and apoptosis, and is associated with the multidrug resistance (MDR) of tumour cells, which has important guiding significance for the judgement of tumor malignancy and prognosis. Several uPAR-targeted antitumour therapeutic agents have been developed to suppress tumour growth, metastatic processes and drug resistance. Here, we review the recent advances in the development of uPAR-targeted antitumor therapeutic strategies, including nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy, to promote the translation of these therapeutic agents to clinical applications.
Collapse
Affiliation(s)
- Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Ya-Jun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
11
|
Rasul MF, Hussen BM, Salihi A, Ismael BS, Jalal PJ, Zanichelli A, Jamali E, Baniahmad A, Ghafouri-Fard S, Basiri A, Taheri M. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Mol Cancer 2022; 21:64. [PMID: 35241090 PMCID: PMC8892709 DOI: 10.1186/s12943-021-01487-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) shows the opportunity to treat a diverse array of untreated various genetic and complicated disorders. Therapeutic genome editing processes that target disease-causing genes or mutant genes have been greatly accelerated in recent years as a consequence of improvements in sequence-specific nuclease technology. However, the therapeutic promise of genome editing has yet to be explored entirely, many challenges persist that increase the risk of further mutations. Here, we highlighted the main challenges facing CRISPR/Cas9-based treatments and proposed strategies to overcome these limitations, for further enhancing this revolutionary novel therapeutics to improve long-term treatment outcome human health.
Collapse
Affiliation(s)
- Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Abbas Salihi
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq.,Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Bnar Saleh Ismael
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Kurdistan region, Erbil, Iraq
| | - Paywast Jamal Jalal
- Biology Department, College of Science, University of Sulaimani, Sulaimani, Iraq
| | - Anna Zanichelli
- Department of Biomedical Sciences, University of Westminster, London, UK
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Liu M, Chen S, Zhang A, Zheng Q, Fu J. PLAUR as a Potential Biomarker Associated with Immune Infiltration in Bladder Urothelial Carcinoma. J Inflamm Res 2021; 14:4629-4641. [PMID: 34552345 PMCID: PMC8450190 DOI: 10.2147/jir.s326559] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
Background Bladder urothelial carcinoma (BLCA) is one of the most lethal and aggressive malignancies of genitourinary system that affects human health. The urokinase plasminogen activator receptor (PLAUR) plays essential roles in tumorigenesis and immune modulation, and its aberrant expression is closely correlated with cancer progression. However, whether PLAUR has the potential to be one promising biomarker or immunotherapy target for BLCA is unknown. Methodology Various online databases were applied to assess the expression profile and prognostic value of PLAUR, as well as its correlation with immune infiltration in BLCA, including Oncomine, PrognoScan, TCGA, cBioPortal, TIMER, TISIDB, UALCAN, and MethSurv. The expression of PLAUR in BLCA was confirmed with ELISA assay for serum samples and immunohistochemistry for tissue samples. Results The results showed that the expression of PLAUR was elevated in BLCA, which was further confirmed by ELISA and immunohistochemistry. Patients with higher PLAUR level were predicted to have lower overall survival and disease specific survival rates, which were not impacted by the genetic alterations of PLAUR. In addition, the expression of PLAUR was positively associated with immune infiltration, and also the expression levels of gene markers of various immune cells. The negative correlation between PLAUR expression and PLAUR methylation level was observed, among which PLAUR expression was positively correlated with the abundance of 28 kinds of tumor-infiltrating lymphocytes, while PLAUR methylation level was negatively correlated with the abundance of 11 types of tumor-infiltrating lymphocytes. Moreover, the methylation level of PLAUR was closely correlated with patients’ clinicopathological features, and hypomethylation of PLAUR was associated with better outcomes of BLCA patients. Conclusion These findings suggested that PLAUR had the potential to serve as a valuable detection and prognostic biomarker or immunotherapeutic target for BLCA.
Collapse
Affiliation(s)
- Mulin Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, People's Republic of China
| | - Siyi Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China
| | - Aihui Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China
| | - Qin Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China
| | - Juan Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, People's Republic of China
| |
Collapse
|
13
|
Peri S, Biagioni A, Versienti G, Andreucci E, Staderini F, Barbato G, Giovannelli L, Coratti F, Schiavone N, Cianchi F, Papucci L, Magnelli L. Enhanced Vasculogenic Capacity Induced by 5-Fluorouracil Chemoresistance in a Gastric Cancer Cell Line. Int J Mol Sci 2021; 22:ijms22147698. [PMID: 34299320 PMCID: PMC8303918 DOI: 10.3390/ijms22147698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy is still widely used as a coadjutant in gastric cancer when surgery is not possible or in presence of metastasis. During tumor evolution, gatekeeper mutations provide a selective growth advantage to a subpopulation of cancer cells that become resistant to chemotherapy. When this phenomenon happens, patients experience tumor recurrence and treatment failure. Even if many chemoresistance mechanisms are known, such as expression of ATP-binding cassette (ABC) transporters, aldehyde dehydrogenase (ALDH1) activity and activation of peculiar intracellular signaling pathways, a common and universal marker for chemoresistant cancer cells has not been identified yet. In this study we subjected the gastric cancer cell line AGS to chronic exposure of 5-fluorouracil, cisplatin or paclitaxel, thus selecting cell subpopulations showing resistance to the different drugs. Such cells showed biological changes; among them, we observed that the acquired chemoresistance to 5-fluorouracil induced an endothelial-like phenotype and increased the capacity to form vessel-like structures. We identified the upregulation of thymidine phosphorylase (TYMP), which is one of the most commonly reported mutated genes leading to 5-fluorouracil resistance, as the cause of such enhanced vasculogenic ability.
Collapse
Affiliation(s)
- Sara Peri
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3-50134 Firenze, Italy; (S.P.); (F.S.); (G.B.); (F.C.)
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50-50134 Firenze, Italy; (A.B.); (G.V.); (E.A.); (L.P.); (L.M.)
| | - Giampaolo Versienti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50-50134 Firenze, Italy; (A.B.); (G.V.); (E.A.); (L.P.); (L.M.)
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50-50134 Firenze, Italy; (A.B.); (G.V.); (E.A.); (L.P.); (L.M.)
| | - Fabio Staderini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3-50134 Firenze, Italy; (S.P.); (F.S.); (G.B.); (F.C.)
| | - Giuseppe Barbato
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3-50134 Firenze, Italy; (S.P.); (F.S.); (G.B.); (F.C.)
| | - Lisa Giovannelli
- Department of Neuroscience, Psychology, Drug Research and Children’s Health, University of Florence, Viale Pieraccini, 6-50139 Firenze, Italy;
| | - Francesco Coratti
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3-50134 Firenze, Italy; (S.P.); (F.S.); (G.B.); (F.C.)
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50-50134 Firenze, Italy; (A.B.); (G.V.); (E.A.); (L.P.); (L.M.)
- Correspondence: (N.S.); (F.C.); Tel.: +39-055-275-1309 (N.S.); +39-055-412-029 (F.C.)
| | - Fabio Cianchi
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3-50134 Firenze, Italy; (S.P.); (F.S.); (G.B.); (F.C.)
- Correspondence: (N.S.); (F.C.); Tel.: +39-055-275-1309 (N.S.); +39-055-412-029 (F.C.)
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50-50134 Firenze, Italy; (A.B.); (G.V.); (E.A.); (L.P.); (L.M.)
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50-50134 Firenze, Italy; (A.B.); (G.V.); (E.A.); (L.P.); (L.M.)
| |
Collapse
|