1
|
Li Y, Liu P, Zhang B, Chen J, Yan Y. Global trends and research hotspots in nanodrug delivery systems for breast cancer therapy: a bibliometric analysis (2013-2023). Discov Oncol 2025; 16:269. [PMID: 40047951 PMCID: PMC11885776 DOI: 10.1007/s12672-025-02014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
OBJECTIVE Nanomedicine offers fresh approaches for breast cancer treatment, countering traditional limitations. The nanodrug delivery system's precision and biocompatibility hold promise, yet integration hurdles remain. This study reviews nano delivery systems in breast cancer therapy from 2013 to 2023, guiding future research directions. METHODS In this study, we conducted a comprehensive search on Web of Science database (Guilin Medical University purchase edition) and downloaded literature related to the field published between 2013 and 2023. We analyzed these publications using R software, VOSviewer, and CiteSpace software. RESULTS This study reviewed 2632 documents, showing a steady publication increase from 2013 to 2023, peaking at 408 in 2022. China, USA, India, and Iran were prominent in publishing. The Chinese Academy of Sciences and Tabriz University of Medical Science were key collaboration centers. Notably, the Journal of Controlled Release and Biomaterials ranked among the top 10 journals for publications and citations, establishing their field representation. Key terms like "breast cancer," "nanoparticles," "drug delivery," "in-vitro," and "delivery" were widely used. Research focused on optimizing drug targeting, utilizing the tumor microenvironment for drug delivery, and improving delivery efficiency. CONCLUSION The nanodrug delivery system, as an innovative drug delivery approach, offers numerous advantages and has garnered global attention from researchers. This study provides an analysis of the status and hotspots in nano delivery systems within the realm of breast cancer therapy, offering valuable insights for future research in this domain.
Collapse
Affiliation(s)
- Yang Li
- Department of Pharmacy, The First People's Hospital of Yulin, Yulin, Guangxi, China
| | - Pingping Liu
- Sanya Central Hospital (The Third People's Hospital of Hainan Province), Hainan, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Juan Chen
- Sanya Central Hospital (The Third People's Hospital of Hainan Province), Hainan, China
| | - Yuanyuan Yan
- Sanya Central Hospital (The Third People's Hospital of Hainan Province), Hainan, China.
| |
Collapse
|
2
|
Cheng J, Xu L, Xuan Y, Zhou F, Huang A, Zeng S, Wang H, Wang Y, Zhan Y, Yan X, Luo S, Liu Y, Cheng M. Linear polyubiquitylation of Gli protein regulates its protein stability and facilitates tumor growth in colorectal cancer. Cell Death Discov 2024; 10:369. [PMID: 39164252 PMCID: PMC11335874 DOI: 10.1038/s41420-024-02147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC) mediates the linear ubiquitination of various proteins and is involved in NF-κB signaling and immune regulation. However, the function and mechanism of linear ubiquitination in regulating oncogenic signaling and tumor growth have remained poorly understood. Herein, we identified Gli proteins, key transcription factors in the Hedgehog (Hh) signaling pathway, as novel substrates of LUBAC. Linear ubiquitination stabilizes Gli proteins, leading to the noncanonical activation of Hh signaling in CRC cells. Furthermore, LUBAC facilitates tumor growth in CRC cells. Additionally, elevated expression of LUBAC components in CRC tissues was observed, and higher expression levels of these components correlated with poor prognosis in CRC patients. Interestingly, inhibition of LUBAC using either a small molecule agonist or RNA silencing specifically suppressed cell growth in CRC cells but had no effect on normal intestinal cells. Taken together, aberrant expression of LUBAC components activates Hh signaling noncanonically by mediating linear ubiquitination, promoting tumor growth in CRC, demonstrating the novel function of linear ubiquitination in regulating the protein stability of its substrates and highlighting the potential of targeting LUBAC as a therapeutic strategy in CRC.
Collapse
Affiliation(s)
- Junyao Cheng
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Linlin Xu
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Pathology and Institute of Molecular Pathology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yanlu Xuan
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Feifei Zhou
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Aidi Huang
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Pathology and Institute of Molecular Pathology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shaopeng Zeng
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hailong Wang
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Centre, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yiting Wang
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuan Zhan
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Pathology and Institute of Molecular Pathology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaohua Yan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shiwen Luo
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Pathology and Institute of Molecular Pathology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Minzhang Cheng
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
3
|
Yang P, Yang X, Wang D, Yang H, Li Z, Zhang C, Zhang S, Zhu J, Li X, Su P, Zhuang T. PSMD14 stabilizes estrogen signaling and facilitates breast cancer progression via deubiquitinating ERα. Oncogene 2024; 43:248-264. [PMID: 38017133 PMCID: PMC10798890 DOI: 10.1038/s41388-023-02905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
The over-activation of ERα signaling is regarded as the major driver for luminal breast cancers, which could be effective controlled via selective estrogen receptor modulators (SERM), such as tamoxifen. The endocrine resistance is still a challenge for breast cancer treatment, while recently studies implicate the post-translational modification on ERα play important roles in endocrine resistance. The stability of ERα protein and ERα transcriptome are subject to a balance between E3 ubiquitin ligases and deubiquitinases. Through deubiquitinases siRNA library screening, we discover PSMD14 as a critical deubiquitinase for ERα signaling and breast cancer progression. PSMD14 could facilitate breast cancer progression through ERα signaling in vitro and in vivo, while pharmaceutical inhibition of PSMD14 via Thiolutin could block the tumorigenesis in breast cancer. In endocrine resistant models, PSMD14 inhibition could de-stabilize the resistant form of ERα (Y537S) and restore tamoxifen sensitivity. Molecular studies reveal that PSMD14 could inhibition K48-linked poly-ubiquitination on ERα, facilitate ERα transcriptome. Interestingly, ChIP assay shows that ERα could bind to the promoter region of PSMD14 and facilitate its gene transcription, which indicates PSMD14 is both the upstream modulator and downstream target for ERα signaling in breast cancer. In general, we identified a novel positive feedback loop between PSMD14 and ERα signaling in breast cancer progression, while blockade of PSMD14 could be a plausible strategy for luminal breast cancer.
Collapse
Affiliation(s)
- Penghe Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Xiao Yang
- Department of Laboratory Medicine, Xinxiang Central Hospital, Xinxiang, 453003, Henan Province, PR China
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning Province, PR China
| | - Dehai Wang
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, PR China
| | - Huijie Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Zhongbo Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Chenmiao Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Shuqing Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Jian Zhu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning Province, PR China.
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, PR China.
| | - Xin Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110000, Liaoning Province, PR China.
| | - Peng Su
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, PR China.
| | - Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| |
Collapse
|
4
|
Wang Y, Peng M, Zhong Y, Xiong W, Zhu L, Jin X. The E3 ligase RBCK1 reduces the sensitivity of ccRCC to sunitinib through the ANKRD35-MITD1-ANXA1 axis. Oncogene 2023; 42:952-966. [PMID: 36732658 DOI: 10.1038/s41388-023-02613-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
Despite the promise of targeted tyrosine kinase inhibitors (TKIs), such as sunitinib, in the extension of survival time in patients with clear cell renal cell carcinoma (ccRCC) progression or metastasis, the patients eventually succumb to inevitable drug resistance. Protein degradation executed by the ubiquitin-dependent proteasome system played an important role in determining the sensitivity of ccRCC to sunitinib. Here, we applied the bioinformatic analysis to identify that E3 ligase RBCK1 was elevated in the sunitinib-resistant renal cancer cell lines or patient specimens. The subsequent in vitro or in vivo studies demonstrated that RBCK1 contributed to decreasing the sensitivity of ccRCC to sunitinib. Then, we showed that inhibition of RBCK1 inactivated the AKT and MAPK signaling pathways, which might be one of the main reasons why RBCK1 induces sunitinib resistance in ccRCC cells. Mechanistically, our results indicated that RBCK1 promotes the degradation of ANKRD35 and that ANKRD35 destabilizes MITD1 by binding with SUMO2 in ccRCC cells. In addition, we showed that the RBCK1-ANKRD35-MITD1-ANXA1 axis regulates the phosphorylation of AKT and ERK and contributes to the dysregulation of sunitinib in ccRCC cells. Therefore, we identified a novel mechanism for regulating the sensitivity of sunitinib in ccRCC. Therefore, we elucidated a novel mechanism by which RBCK1 regulates sunitinib sensitivity in ccRCC.
Collapse
Affiliation(s)
- Yapeng Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mou Peng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yawen Zhong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liang Zhu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Tecalco-Cruz AC, Macías-Silva M, Ramírez-Jarquín JO, Ramírez-Jarquín UN. Decoding the Therapeutic Implications of the ERα Stability and Subcellular Distribution in Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:867448. [PMID: 35498431 PMCID: PMC9044904 DOI: 10.3389/fendo.2022.867448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/22/2023] Open
Abstract
Approximately 70% of all breast cancer cases are estrogen receptor-alpha positive (ERα+) and any ERα signaling pathways deregulation is critical for the progression of malignant mammary neoplasia. ERα acts as a transcription factor that promotes the expression of estrogen target genes associated with pro-tumor activity in breast cancer cells. Furthermore, ERα is also part of extranuclear signaling pathways related to endocrine resistance. The regulation of ERα subcellular distribution and protein stability is critical to regulate its functions and, consequently, influence the response to endocrine therapies and progression of this pathology. This minireview highlights studies that have deciphered the molecular mechanisms implicated in controlling ERα stability and nucleo-cytoplasmic transport. These mechanisms offer information about novel biomarkers, therapeutic targets, and promising strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Mexico City, Mexico
| | - Marina Macías-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Uri Nimrod Ramírez-Jarquín
- Neural Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
- Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| |
Collapse
|