1
|
Liu H, Peng Y, Zhuang X. Polyphyllin VII enhances the sensitivity of endometrial carcinoma cells to medroxyprogesterone acetate through upregulating miR‑33a‑5p expression. Oncol Lett 2025; 29:70. [PMID: 39628827 PMCID: PMC11612720 DOI: 10.3892/ol.2024.14816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024] Open
Abstract
Endometrial carcinoma (EC) often exhibits resistance to hormone therapies, such as medroxyprogesterone acetate (MPA), highlighting the need for novel strategies to enhance therapeutic efficacy. The present study aimed to investigate the effects of polyphyllin VII (PPVII) on the efficacy of MPA in EC, focusing on the regulatory role of microRNA (miR)-33a-5p. Briefly, an MPA-resistant Ishikawa cell line (Ishikawa/MPA-R), maintained with 10 µM MPA, was established and transfected with negative control (NC) and miR-33a-5p inhibitors. Following treatment with PPVII and MPA, the proliferation capacity and apoptosis levels of the Ishikawa and Ishikawa/MPA-R cells were evaluated using reverse transcription-quantitative polymerase chain reaction, MTT assay, clonogenic assay, flow cytometry, western blotting and dual-luciferase assay. Next, the expression levels of miR-33a-5p and F-box and leucine rich repeat protein 16 (FBXL16) were measured, and the regulatory relationship between miR-33a-5p and FBXL16 was analyzed. Significant reductions in cell viability were observed in all groups following treatment with increased concentrations of MPA and PPVII, with the greatest effect observed in the combined MPA + PPVII group (P<0.01). The apoptosis levels of the Ishikawa/MPA-R cells were significantly increased in all drug treatment groups, particularly in the MPA + PPVII group (P<0.05). PPVII treatment significantly increased the expression level of miR-33a-5p in Ishikawa/MPA-R cells (P<0.01). In the PPVII + miR-33a-5p inhibitor group, the Ishikawa/MPA-R cells exhibited an upregulation in the viability (P<0.01), colony formation ability (P<0.01), proportion in the G1 phase (P<0.05) and the protein expression levels of cyclin D1 (P<0.01) and cyclin-dependent kinase 4 (P<0.01), and a reduction in the miR-33a-5p expression (P<0.01), apoptosis levels (P<0.05), proportion in the S (P<0.05) and G2 phases and the levels of Bcl-2-associated X protein (P<0.001). The FBXL16 protein expression in Ishikawa/MPA-R cells was significantly higher compared with Ishikawa cells, and the mRNA and protein expression levels of FBXL16 were markedly elevated in the PPVII + miR-33a-5p inhibitor group compared with the PPVII + NC group (P<0.01). These findings suggested that PPVII upregulated the expression of miR-33a-5p, enhanced the sensitivity of EC cells to MPA and potentially exerted anticancer effects in EC through the synergistic action of the miR-33a-5p/FBXL16 axis in combination with MPA.
Collapse
Affiliation(s)
- Haoen Liu
- Department of Traditional Chinese Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Wujin Clinical College, Xuzhou Medical University, Changzhou, Jiangsu 221004, P.R. China
| | - Yan Peng
- Wujin Clinical College, Xuzhou Medical University, Changzhou, Jiangsu 221004, P.R. China
- Department of Gynecology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
| | - Xiaodan Zhuang
- Department of Traditional Chinese Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Wujin Clinical College, Xuzhou Medical University, Changzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
2
|
Song L, Wu H, Sun X, Liu X, Ling X, Ni W, Li L, Liu B, Wei J, Li X, Li J, Wang Y, Mao F. Penfluridol targets septin7 to suppress endometrial cancer by septin7-Orai/IP3R-Ca 2+-PIK3CA pathway. iScience 2025; 28:111640. [PMID: 39850355 PMCID: PMC11754080 DOI: 10.1016/j.isci.2024.111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/31/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Phenotypic screening of existing drugs is a good strategy to discover new drugs. Herein, 33 psychotherapeutic drugs in our drug library were screened by phenotypic screening and penfluridol (PFD) was found to exhibit excellent anti-endometrial cancer (EC) activity both in vitro and in vivo. Furthermore, the molecular target of PFD was identified as septin7, a tumor suppressor in EC. In septin7-deficient EC cells and xenograft mouse models, PFD exhibited weaker anti-cancer properties, indicating that septin7 was essential for the tumor inhibitory activity. Notably, PFD could induce cell apoptosis by regulating the septin7-Orai/IP3R-Ca2+-PIK3CA pathway. In addition, PFD attenuates the interaction of septin7-tubulin, thereby inhibiting microtubule polymerization. In summary, this study revealed a target and mechanistic insights into EC therapeutic strategies and identified a potential candidate agent for the treatment of EC.
Collapse
Affiliation(s)
- Lingyi Song
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huiwen Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao Sun
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaohu Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xianwu Ling
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Ni
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lijuan Li
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Beibei Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlian Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, China
| | - Yudong Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai 200030, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Zhang C, Lu X, Ni T, Wang Q, Gao X, Sun X, Li J, Mao F, Hou J, Wang Y. Developing patient-derived organoids to demonstrate JX24120 inhibits SAMe synthesis in endometrial cancer by targeting MAT2B. Pharmacol Res 2024; 209:107420. [PMID: 39293586 DOI: 10.1016/j.phrs.2024.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Endometrial cancer (EC) is one of the most common gynecologic malignancies, which lacking effective drugs for intractable conditions or patients unsuitable for surgeries. Recently, the patient-derived organoids (PDOs) are found feasible for cancer research and drug discoveries. Here, we have successfully established a panel of PDOs from EC and conducted drug repurposing screening and mechanism analysis for cancer treatment. We confirmed that the regulatory β subunit of methionine adenosyltransferase (MAT2B) is highly correlated with malignant progression in endometrial cancer. Through drug screening on PDOs, we identify JX24120, chlorpromazine derivative, as a specific inhibitor for MAT2B, which directly binds to MAT2B (Kd = 4.724 μM) and inhibits the viability of EC PDOs and canonical cell lines. Correspondingly, gene editing assessment demonstrates that JX24120 suppresses tumor growth depending on the presence of MAT2B in vivo and in vitro. Mechanistically, JX24120 induces inhibition of S-adenosylmethionine (SAMe) synthesis, leading to suppressed mTORC1 signaling, abnormal energy metabolism and protein synthesis, and eventually apoptosis. Taken together, our study offers a novel approach for drug discovery and efficacy assessment by using the PDOs models. These findings suggest that JX24120 may be a potent MAT2B inhibitor and will hopefully serve as a prospective compound for endometrial cancer therapy.
Collapse
Affiliation(s)
- Chunxue Zhang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Xiaojing Lu
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Ting Ni
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Qi Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyan Gao
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Xiao Sun
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China.
| | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China.
| |
Collapse
|
4
|
Tan B, Kartal Y, Yesilyurt F, Akdoğan N, Doyduk D, Dişli A. Synthesis of new phenothiazine derivatives: Molecular docking, assessment of cytotoxic activity and oxidant-antioxidant properties on PCS-201-012, HT-29, and SH-SY5Y cell lines. Arch Pharm (Weinheim) 2024; 357:e2400281. [PMID: 39058899 DOI: 10.1002/ardp.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Phenothiazine (PTZ) derivatives have been acknowledged as versatile compounds with significant implications across various areas of medicine, particularly, in cancer research. The cytotoxic effects of synthesized compounds on both normal and cancerous cells, along with their oxidant-antioxidant properties, are pivotal factors in cancer treatment strategies. In the current study, eight new PTZ derivatives were synthesized and the compounds' cytotoxic activities were assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay while the oxidant-antioxidant properties were evaluated by oxidative stress index (OSI) calculation in SH-SY5Y (a human neuroblastoma cell line), HT-29 (a human colorectal adenocarcinoma cell line), and PCS-201-012 (a human primary dermal fibroblast cell line) cells. Consequently, the half-maximal inhibitory concentration (IC50) values of compound 3a were determined to be 218.72, 202.85, and 227.86 μM while the IC50 values of compound 3b were defined to be 227.42, 199.27, and 250.11 μM in PCS-201-012, HT-29, and SH-SY5Y cells, respectively. Additionally, it was determined that the synthesized compounds demonstrated the lowest OSI in PCS-201-012 cells as compared to the other cell lines.
Collapse
Affiliation(s)
- Bensu Tan
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Türkiye
| | - Yasemin Kartal
- Department of Physiology, Faculty of Medicine, Kırklareli University, Kırklareli, Türkiye
| | - Fatma Yesilyurt
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Türkiye
| | - Nurdan Akdoğan
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Türkiye
| | - Doğukan Doyduk
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Türkiye
| | - Ali Dişli
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Türkiye
| |
Collapse
|
5
|
Xue F, Liu L, Tao X, Zhu W. TET3-mediated DNA demethylation modification activates SHP2 expression to promote endometrial cancer progression through the EGFR/ERK pathway. J Gynecol Oncol 2024; 35:e64. [PMID: 38456588 PMCID: PMC11390245 DOI: 10.3802/jgo.2024.35.e64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/18/2023] [Accepted: 02/11/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE Src homology phosphotyrosin phosphatase 2 (SHP2) has been implicated in the progression of several cancer types. However, its function in endometrial cancer (EC) remains unclear. Here, we report that the ten-eleven translocation 3 (TET3)-mediated DNA demethylation modification is responsible for the oncogenic role of SHP2 in EC and explore the detailed mechanism. METHODS The transcriptomic differences between EC tissues and control tissues were analyzed using bioinformatics tools, followed by protein-protein interaction network establishment. EC cells were treated with shRNA targeting SHP2 alone or in combination with isoprocurcumenol, an epidermal growth factor receptor (EGFR) signaling activator. The cell biological behavior was examined using cell counting kit-8, colony formation, flow cytometry, scratch assay, and transwell assays, and the median inhibition concentration values to medroxyprogesterone acetate/gefitinib were calculated. The binding of TET3 to the SHP2 promoter was verified. EC cells with TET3 knockdown and combined with SHP2 overexpression were selected to construct tumor xenografts in mice. RESULTS TET3 and SHP2 were overexpressed in EC cells. TET3 bound to the SHP2 promoter, thereby increasing the DNA hydroxymethylation modification and activating SHP2 to induce the EGFR/extracellular signal-regulated kinase (ERK) pathway. Knockdown of TET3 or SHP2 inhibited EC cell malignant aggressiveness and impaired the EGFR/ERK pathway. Silencing of TET3 inhibited the tumorigenic capacity of EC cells, and ectopic expression of SHP2 or isoprocurcumenol reversed the inhibitory effect of TET3 knockdown on the biological activity of EC cells. CONCLUSION TET3 promoted the DNA demethylation modification in the SHP2 promoter and activated SHP2, thus activating the EGFR/ERK pathway and leading to EC progression.
Collapse
Affiliation(s)
- Fen Xue
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Obstetrics and Gynecology, The Fourth Hospital of Baotou, Baotou, China
| | - Lifen Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueqiang Tao
- Department of Spinal Surgery, The Fourth Hospital of Baotou, Baotou, China
| | - Weipei Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Ling X, Zhang J, Song L, Wu H, Wang Q, Liu X, Ni W, Li J, Wang Y, Mao F. Discovery of Novel Azaphenothiazine Derivatives to Suppress Endometrial Cancer by Targeting GRP75 to Impair Its Interaction with IP3R and Mitochondrial Ca 2+ Homeostasis. J Med Chem 2024; 67:13829-13851. [PMID: 39082833 DOI: 10.1021/acs.jmedchem.4c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Endometrial cancer (EC) is the most common cancer of the female reproductive tract, and there is an urgent need to develop new candidate drugs with good efficacy and safety to improve the survival rate and life quality of EC patients. Herein, a series of new azaphenothiazine derivatives were designed and synthesized and their anti-EC activities were evaluated. Among them, compound 33 showed excellent antiproliferative activities against both progesterone-sensitive ISK cells and progesterone-resistant KLE cells. Moreover, 33 could significantly inhibit colony formation and migration of EC cells and induce cell apoptosis. Remarkably, 33 significantly suppressed KLE xenograft tumor growth without influencing body weights or key organs. In addition, 33 exhibited good pharmacokinetic properties and low extrapyramidal side effects. Mechanism research indicated that 33 reduced Ca2+ levels in mitochondria by targeting GRP75 and disrupting its interaction with IP3R. Overall, 33 showed promising potential as an anti-EC candidate agent.
Collapse
Affiliation(s)
- Xianwu Ling
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiahui Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lingyi Song
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huiwen Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohu Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Ni
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, China
| | - Yudong Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai 200030, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Wang Q, Li L, Gao X, Zhang C, Xu C, Song L, Li J, Sun X, Mao F, Wang Y. Targeting GRP75 with a Chlorpromazine Derivative Inhibits Endometrial Cancer Progression Through GRP75-IP3R-Ca 2+-AMPK Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304203. [PMID: 38342610 PMCID: PMC11022737 DOI: 10.1002/advs.202304203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/18/2024] [Indexed: 02/13/2024]
Abstract
Tumors often overexpress glucose-regulated proteins, and agents that interfere with the production or activity of these proteins may represent novel cancer treatments. The chlorpromazine derivative JX57 exhibits promising effects against endometrial cancer with minimal extrapyramidal side effects; however, its mechanisms of action are currently unknown. Here, glucose-regulated protein 75 kD (GRP75) is identified as a direct target of JX57 using activity-based protein profiling and loss-of-function experiments. The findings show that GRP75 is necessary for the biological activity of JX57, as JX57 exhibits moderate anticancer properties in GRP75-deficient cancer cells, both in vitro and in vivo. High GRP75 expression is correlated with poor differentiation and poor survival in patients with endometrial cancer, whereas the knockdown of GRP75 can significantly suppress tumor growth. Mechanistically, the direct binding of JX57 to GRP75 impairs the structure of the mitochondria-associated endoplasmic reticulum membrane and disrupts the endoplasmic reticulum-mitochondrial calcium homeostasis, resulting in a mitochondrial energy crisis and AMP-activated protein kinase activation. Taken together, these findings highlight GRP75 as a potential prognostic biomarker and direct therapeutic target in endometrial cancer and suggest that the chlorpromazine derivative JX57 can potentially be a new therapeutic option for endometrial cancer.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Lijuan Li
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Xiaoyan Gao
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Chunxue Zhang
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Chen Xu
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Lingyi Song
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Jian Li
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Xiao Sun
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Fei Mao
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Yudong Wang
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| |
Collapse
|
8
|
Zhang Z, Zhang M, Zhou J, Wang D. Genome-wide CRISPR screening reveals ADCK3 as a key regulator in sensitizing endometrial carcinoma cells to MPA therapy. Br J Cancer 2023; 129:601-611. [PMID: 37402867 PMCID: PMC10421920 DOI: 10.1038/s41416-023-02347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The effectiveness of conservative treatment of endometrial carcinoma (EC) with oral progesterone therapy, such as medroxyprogesterone acetate (MPA), can be blunted due to primary or acquired resistance, but the underlying mechanisms remain incompletely defined. METHODS Genome-wide CRISPR screening was performed to identify potential regulators in response to MPA in Ishikawa cells. Crystal violet staining, RT-qPCR, western blotting, ChIP-qPCR and luciferase assays were employed to elucidate the p53-AarF domain-containing kinase 3 (ADCK3) regulatory axis and its roles in sensitizing EC cells to MPA treatment. RESULTS ADCK3 is identified as a previously unrecognized regulator in response to MPA in EC cells. Loss of ADCK3 in EC cells markedly alleviated MPA-induced cell death. Mechanistically, loss of ADCK3 primarily suppresses MPA-mediated ferroptosis by abrogating arachidonate 15-lipoxygenase (ALOX15) transcriptional activation. Moreover, we validated ADCK3 as a direct downstream target of the tumor suppressor p53 in EC cells. By stimulating the p53-ADCK3 axis, the small-molecule compound Nutlin3A synergized with MPA to efficiently inhibit EC cell growth. CONCLUSIONS Our findings reveal ADCK3 as a key regulator of EC cells in response to MPA and shed light on a potential strategy for conservative EC treatment by activating the p53-ADCK3 axis to sensitize MPA-mediated cell death.
Collapse
Affiliation(s)
- Zijing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, China
| | - Meng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, China
| | - Jingyi Zhou
- Department of Obstetrics and Gynecology, Peking University People's Hospital, 100044, Beijing, China.
| | - Donglai Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, China.
| |
Collapse
|
9
|
Zhang C, Sheng Y, Sun X, Wang Y. New insights for gynecological cancer therapies: from molecular mechanisms and clinical evidence to future directions. Cancer Metastasis Rev 2023; 42:891-925. [PMID: 37368179 PMCID: PMC10584725 DOI: 10.1007/s10555-023-10113-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
Advanced and recurrent gynecological cancers lack effective treatment and have poor prognosis. Besides, there is urgent need for conservative treatment for fertility protection of young patients. Therefore, continued efforts are needed to further define underlying therapeutic targets and explore novel targeted strategies. Considerable advancements have been made with new insights into molecular mechanisms on cancer progression and breakthroughs in novel treatment strategies. Herein, we review the research that holds unique novelty and potential translational power to alter the current landscape of gynecological cancers and improve effective treatments. We outline the advent of promising therapies with their targeted biomolecules, including hormone receptor-targeted agents, inhibitors targeting epigenetic regulators, antiangiogenic agents, inhibitors of abnormal signaling pathways, poly (ADP-ribose) polymerase (PARP) inhibitors, agents targeting immune-suppressive regulators, and repurposed existing drugs. We particularly highlight clinical evidence and trace the ongoing clinical trials to investigate the translational value. Taken together, we conduct a thorough review on emerging agents for gynecological cancer treatment and further discuss their potential challenges and future opportunities.
Collapse
Affiliation(s)
- Chunxue Zhang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yaru Sheng
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiao Sun
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| |
Collapse
|
10
|
Yang L, Fan Q, Wang J, Yang X, Yuan J, Li Y, Sun X, Wang Y. TRPS1 regulates the opposite effect of progesterone via RANKL in endometrial carcinoma and breast carcinoma. Cell Death Discov 2023; 9:185. [PMID: 37344459 DOI: 10.1038/s41420-023-01484-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
Medroxyprogesterone (MPA) has therapeutic effect on endometrial carcinoma (EC), while it could promote the carcinogenesis of breast cancer (BC) by activating receptor activator of NF-kB ligand (RANKL). However, the selective mechanism of MPA in endometrium and breast tissue remains obscure. Multiomics analysis of chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) were performed in cell lines derived from endometrial cancer and mammary tumor to screen the differential co-regulatory factors of progesterone receptor (PR). Dual-luciferase assays and ChIP-PCR assays were used to validate the transcriptional regulation. Co-immunoprecipitation (Co-IP) and immunofluorescence assays were carried out to explore molecular interactions between PR, the cofactor transcriptional repressor GATA binding 1 (TRPS1), and histone deacetylase 2 (HDAC2). Subsequently, human endometrial cancer/breast cancer xenograft models were established to investigate the regulation effect of cofactor TRPS1 in vivo. In the current study, we found that MPA downregulated RANKL expression in a time- and dose-dependent manner in EC, while had the opposite effect on BC. Then PR could recruit cofactor TRPS1 to the promoter of RANKL, leading to histone deacetylation of RANKL to repress its transcription in EC, whereas MPA disassociated the PR/TRPS1/HDAC2 complex to enhance RANKL histone acetylation in BC. Therefore, TRPS1, the coregulator recruited by PR played a critical role in the selective mechanism of progesterone in EC and BC and could become a potential candidate for targeted therapy to improve the anticancer effect of MPA on EC and avoid its carcinogenic effect on BC.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Qiong Fan
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jing Wang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiaoming Yang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jiangjing Yuan
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yuhong Li
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiao Sun
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Municipal Key Clinical Specialty, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Yudong Wang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Municipal Key Clinical Specialty, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| |
Collapse
|
11
|
Wei L, Ma X, Hou Y, Zhao T, Sun R, Qiu C, Liu Y, Qiu Z, Liu Z, Jiang J. Verteporfin reverses progestin resistance through YAP/TAZ-PI3K-Akt pathway in endometrial carcinoma. Cell Death Dis 2023; 9:30. [PMID: 36693834 PMCID: PMC9873621 DOI: 10.1038/s41420-023-01319-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
Progestin resistance is a problem for patients with endometrial carcinoma (EC) who require conservative treatment with progestin, and its underlying mechanisms remain unclear. YAP and TAZ (YAP/TAZ), downstream transcription coactivators of Hippo pathway, promote viability, metastasis and also drug resistance of malignant tumors. According to our microarray analysis, YAP/TAZ were upregulated in progestin resistant IshikawaPR cell versus progestin sensitive Ishikawa cell, which implied that YAP/TAZ may be a vital promotor of resistance to progestin. We found YAP/TAZ had higher expression levels among the resistant tissues than sensitive tissues. In addition, knocking down YAP/TAZ decreased cell viability, inhibited cell migration and invasion and increased the sensitivity of IshikawaPR cell to progestin. On the contrary, overexpression of YAP/TAZ increased cell proliferation, metastasis and promoted progestin resistance. We also confirmed YAP/TAZ were involved in progestin resistant process by regulating PI3K-Akt pathway. Furthermore, Verteporfin as an inhibitor of YAP/TAZ could increase sensitivity of IshikawaPR cells to progestin in vivo and in vitro. Our study for the first time indicated that YAP/TAZ play an important role in progestin resistance by regulating PI3K-Akt pathway in EC, which may provide ideas for clinical targeted therapy of progestin resistance.
Collapse
Affiliation(s)
- Lina Wei
- grid.452402.50000 0004 1808 3430Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, 250012 Jinan, Shandong China ,grid.452402.50000 0004 1808 3430Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong China
| | - Xiaohong Ma
- grid.452402.50000 0004 1808 3430Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong China ,grid.440323.20000 0004 1757 3171Department of Gynecology and Obstetrics, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, 264000 Yantai, Shandong China
| | - Yixin Hou
- grid.452402.50000 0004 1808 3430Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, 250012 Jinan, Shandong China ,grid.452402.50000 0004 1808 3430Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong China
| | - Tianyi Zhao
- grid.452402.50000 0004 1808 3430Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, 250012 Jinan, Shandong China ,grid.452402.50000 0004 1808 3430Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong China
| | - Rui Sun
- grid.452402.50000 0004 1808 3430Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, 250012 Jinan, Shandong China ,grid.452402.50000 0004 1808 3430Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong China
| | - Chunping Qiu
- grid.452402.50000 0004 1808 3430Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, 250012 Jinan, Shandong China
| | - Yao Liu
- grid.452402.50000 0004 1808 3430Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, 250012 Jinan, Shandong China ,grid.452402.50000 0004 1808 3430Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong China
| | - Ziyi Qiu
- grid.452402.50000 0004 1808 3430Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, 250012 Jinan, Shandong China ,grid.452402.50000 0004 1808 3430Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong China
| | - Zhiming Liu
- grid.452402.50000 0004 1808 3430Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, 250012 Jinan, Shandong China
| | - Jie Jiang
- grid.452402.50000 0004 1808 3430Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, 250012 Jinan, Shandong China
| |
Collapse
|
12
|
Lv M, Chen P, Bai M, Huang Y, Li L, Feng Y, Liao H, Zheng W, Chen X, Zhang Z. Progestin Resistance and Corresponding Management of Abnormal Endometrial Hyperplasia and Endometrial Carcinoma. Cancers (Basel) 2022; 14:cancers14246210. [PMID: 36551694 PMCID: PMC9776943 DOI: 10.3390/cancers14246210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
With a younger tendency in morbidity age, endometrial cancer (EC) incidence has grown year after year. Worse, even more commonly occurring is endometrial hyperplasia (EH), which is a precancerous endometrial proliferation. For young women with early EC and EH who want to preserve fertility, progestin therapy has been utilized as a routine fertility-preserving treatment approach. Nevertheless, progestin medication failure in some patients is mostly due to progestin resistance and side effects. In order to further analyze the potential mechanisms of progestin resistance in EH and EC, to provide theoretical support for effective therapeutic strategies, and to lay the groundwork for searching novel treatment approaches, this article reviews the current therapeutic effects of progestin in EH and EC, as well as the mechanisms and molecular biomarkers of progestin resistance, and systematically expounds on the potential therapeutic methods to overcome progestin resistance.
Collapse
Affiliation(s)
- Mu Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Peiqin Chen
- Department of Obstetrics and Gynecology, The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Mingzhu Bai
- Reproductive Medicine Center, Maternal and Child Health Hospital in Xuzhou, Xuzhou 215002, China
| | - Yan Huang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai 200032, China
| | - Linxia Li
- Department of Obstetrics and Gynecology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Shanghai 200137, China
| | - Youji Feng
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hong Liao
- Department of Clinical Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaojun Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, China
- Correspondence: (X.C.); (Z.Z.)
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Correspondence: (X.C.); (Z.Z.)
| |
Collapse
|
13
|
Fujiwara R, Taniguchi Y, Rai S, Iwata Y, Fujii A, Fujimoto K, Kumode T, Serizawa K, Morita Y, Espinoza JL, Tanaka H, Hanamoto H, Matsumura I. Chlorpromazine cooperatively induces apoptosis with tyrosine kinase inhibitors in EGFR-mutated lung cancer cell lines and restores the sensitivity to gefitinib in T790M-harboring resistant cells. Biochem Biophys Res Commun 2022; 626:156-166. [PMID: 35994825 DOI: 10.1016/j.bbrc.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022]
Abstract
We previously reported that the antipsychotic drug chlorpromazine (CPZ), which inhibits the formation of clathrin-coated vesicles (CCVs) essential for endocytosis and intracellular transport of receptor tyrosine kinase (RTK), inhibits the growth/survival of acute myeloid leukemia cells with mutated RTK (KIT D816V or FLT3-ITD) by perturbing the intracellular localization of these molecules. Here, we examined whether these findings are applicable to epidermal growth factor receptor (EGFR). CPZ dose-dependently inhibited the growth/survival of the non-small cell lung cancer (NSCLC) cell line, PC9 harboring an EGFR-activating (EGFR exon 19 deletion). In addition, CPZ not only suppressed the growth/survival of gefitinib (GEF)-resistant PC9ZD cells harboring T790 M, but also restored their sensitivities to GEF. Furthermore, CPZ overcame GEF resistance caused by Met amplification in HCC827GR cells. As for the mechanism of CPZ-induced growth suppression, we found that although CPZ hardly influenced the phosphorylation of EGFR, it effectively reduced the phosphorylation of ERK and AKT. When utilized in combination with trametinib (a MEK inhibitor), dabrafenib (an RAF inhibitor), and everolimus (an mTOR inhibitor), CPZ suppressed the growth of PC9ZD cells cooperatively with everolimus but not with trametinib or dabrafenib. Immunofluorescent staining revealed that EGFR shows a perinuclear pattern and was intensely colocalized with the late endosome marker, Rab11. However, after CPZ treatment, EGFR was unevenly distributed in the cells, and colocalization with the early endosome marker Rab5 and EEA1 became more apparent, indicating that CPZ disrupted the intracellular transport of EGFR. These results suggest that CPZ has therapeutic potential for NSCLC with mutated EGFR by a novel mechanism different from conventional TKIs alone or in combination with other agents.
Collapse
Affiliation(s)
- Ryosuke Fujiwara
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Yasuhiro Taniguchi
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Shinya Rai
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Yoshio Iwata
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Aki Fujii
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Ko Fujimoto
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Takahiro Kumode
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Kentaro Serizawa
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Yasuyoshi Morita
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - J Luis Espinoza
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan.
| | - Hitoshi Hanamoto
- Department of Hematology, Kindai University Nara Hospital, Ikoma, Nara, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| |
Collapse
|
14
|
Li L, Liu X, Cui Y, Chen Y, Wu H, Wang J, Gong X, Gao X, Yang L, Li J, Sun X, Mao F, Wang Y. Novel chlorpromazine derivatives as anti-endometrial carcinoma agents with reduced extrapyramidal side effects. Bioorg Chem 2022; 127:106008. [PMID: 35868106 DOI: 10.1016/j.bioorg.2022.106008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
As the traditional conservative remedy for endometrial carcinoma (EC), progesterone has great limitations due to its poor performance, and a new strategy is urgently needed. Our previous work revealed that the antipsychotic drug chlorpromazine (CPZ) has stronger antitumor activity on EC than progesterone does, which may provide a promising conservative alternative for EC patients. Unfortunately, the severe extrapyramidal symptoms (EPSs) at concentrations (>5 mg/kg) that are required for anticarcinoma activity limited its repurposing. Therefore, a series of novel CPZ derivatives were designed and synthesized to avoid EPS and retain its antitumor activity. Among them, 11·2HCl and 18 displayed greater inhibitory activity by modulating SOS1. Notably, even at a dose of 100 mg/kg, 11·2HCl/18 had little effect on the extrapyramidal system. In conclusion, 11·2HCl and 18 greatly repressed the malignant features of endometrial carcinoma and decreased extrapyramidal side effects compared with the original drug CPZ.
Collapse
Affiliation(s)
- Lijuan Li
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohu Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yunxia Cui
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huiwen Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodi Gong
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Gao
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linlin Yang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, Dali 671000, China; Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, Hainan, China
| | - Xiao Sun
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Yudong Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China.
| |
Collapse
|