1
|
He W, Li Y, Liu SB, Chang Y, Han S, Han X, Ma Z, Amin HM, Song YH, Zhou J. From mitochondria to tumor suppression: ACAT1's crucial role in gastric cancer. Front Immunol 2024; 15:1449525. [PMID: 39247186 PMCID: PMC11377227 DOI: 10.3389/fimmu.2024.1449525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Acetyl CoA acetyltransferase 1 (ACAT1), a mitochondrial enzyme, is mainly involved in the formation and decomposition of ketones, isoleucine, and fatty acids. Previous clinical studies showed that mutations in the ACAT1 gene lead to ketoacidosis, Notably the role of ACAT1 in human cancer' pathogenesis varies depending on cancer type, and its specific role in gastric cancer remains largely unknown. In the current study, we found that the expression of ACAT1 in primary late-stage gastric cancer tumor tissues was significantly lower than in early-stage tumors. This observation was further confirmed in high-grade gastric cancer cell line MKN45. The expression of CD44 and OCT4 was decreased, while CD24 expression was increased by overexpressing ACAT1 in MKN45 gastric cancer cells. Moreover, the ability of gastric cancer cells to form colonies on soft agar was also reduced by ACAT1 overexpression. Likewise, overexpression of ACAT1 inhibited epithelial mesenchymal transition (EMT) in gastric cancer cells evidenced by increased expression of the epithelial marker E-Cadherin, decreased expression of mesenchymal marker vimentin, and decreased expression levels of SNAI 1/3. In addition, ACAT1 overexpression inhibited cell migration and invasion, improved the response to 5-Fluorouracil (5-FU) and etoposide. In contrast, inhibition of ACAT1 activity promoted the proliferation of gastric cancer cells. The xenotransplantation results in nude mice showed that overexpression of ACAT1 in gastric cancer cells inhibited tumor growth in vivo. In addition, the low expression of ACAT1 in gastric cancer was further validated by searching public databases and conducting bioinformatic analyses. Mechanistically, bioinformatic analysis found that the inhibitory effect of ACAT1 in gastric cancer may be related to the Adipocytokine Signaling Pathway, Ppar Signaling Pathway, Propanoate Metabolism and P53 Signaling Pathway. Correlation analysis indicated ACAT1 mRNA expression was correlated with immune infiltrates. Collectively, our data show that ACAT1 induces pronounced inhibitory effects on gastric cancer initiation and development, which may impact future strategies to treat this aggressive cancer.
Collapse
Affiliation(s)
- Wei He
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Yanfang Li
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Ying Chang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Shiyuan Han
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Xingyu Han
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Zixin Ma
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Hesham M Amin
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Jin Zhou
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Ye J, Huang X, Qin W, Liang P, Zhao J, Ye Y, Ji H, Peng X, Liang Y, Cai Y. Paired Box 5 (PAX5) Gene Has Diagnostic and Prognostic Potential in Nasopharyngeal Carcinoma. Int J Gen Med 2024; 17:487-501. [PMID: 38348125 PMCID: PMC10860600 DOI: 10.2147/ijgm.s442835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose Paired Box 5 (PAX5) is a transcription factor that is widely associated with carcinogenesis. PAX5 can maintain Epstein-Barr virus (EBV) latency in B cells, while a close association exists between EBV infection and nasopharyngeal carcinoma (NPC). However, there are very few reports on the correlation between PAX5 and NPC development. The aim of this study was to investigate the role of PAX5 in NPC. Patients and Methods The clinical value and prognostic significance of PAX5 in NPC and the association with PAX5 expression and immune cell infiltration were analyzed by multiple GEO datasets. In vivo and in vitro experiments including real-time PCR, Western blot, CCK-8 assay, and methylation sequencing were used to validate the results of bioinformatics analysis. Results The expression of PAX5 was significantly reduced in NPC tissues, with the low expression being correlated with advanced clinical stage, low tumor mutation burden and immune activation, high relative expression of EBV, poor survival for NPC patients. PAX5 exhibited excellent diagnostic performance and had potential as a predictive factor for response to the immune checkpoint inhibitors therapy. Enrichment analysis suggested that the low expression of PAX5 was associated with the dysregulation of Hippo and Wnt signaling pathways. The promoter of PAX5 gene was hypermethylated in NPC tissues. Furthermore, the in vitro and in vivo experiments revealed that NPC tissue and cell lines had low mRNA expression levels of PAX5, the PAX5 promoter was hypermethylated in NPC cell lines, and PAX5 overexpression inhibited NPC cell proliferation and tumor growth in nude mice. Conclusion PAX5 may be a tumor suppressor and serve as a novel potential diagnostic and prognostic marker for NPC.
Collapse
Affiliation(s)
- Jiemei Ye
- Guangxi Health Commission Key Laboratory of Molecular Epidemiology of Nasopharyngeal Carcinoma, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
- Department of Clinical Laboratory, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
| | - Xiaoying Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Weiling Qin
- Guangxi Health Commission Key Laboratory of Molecular Epidemiology of Nasopharyngeal Carcinoma, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
- Department of Clinical Laboratory, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
| | - Pan Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jun Zhao
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yinxin Ye
- Guangxi Health Commission Key Laboratory of Molecular Epidemiology of Nasopharyngeal Carcinoma, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
- Department of Clinical Laboratory, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
| | - Huojin Ji
- Guangxi Health Commission Key Laboratory of Molecular Epidemiology of Nasopharyngeal Carcinoma, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
- Department of Clinical Laboratory, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
| | - Xinyun Peng
- Guangxi Health Commission Key Laboratory of Molecular Epidemiology of Nasopharyngeal Carcinoma, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
- Department of Clinical Laboratory, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
| | - Yushan Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yonglin Cai
- Guangxi Health Commission Key Laboratory of Molecular Epidemiology of Nasopharyngeal Carcinoma, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
- Department of Preventive Medicine, Wuzhou Cancer Center, Wuzhou, Guangxi, People’s Republic of China
| |
Collapse
|
3
|
Gu M, Ren B, Fang Y, Ren J, Liu X, Wang X, Zhou F, Xiao R, Luo X, You L, Zhao Y. Epigenetic regulation in cancer. MedComm (Beijing) 2024; 5:e495. [PMID: 38374872 PMCID: PMC10876210 DOI: 10.1002/mco2.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Epigenetic modifications are defined as heritable changes in gene activity that do not involve changes in the underlying DNA sequence. The oncogenic process is driven by the accumulation of alterations that impact genome's structure and function. Genetic mutations, which directly disrupt the DNA sequence, are complemented by epigenetic modifications that modulate gene expression, thereby facilitating the acquisition of malignant characteristics. Principals among these epigenetic changes are shifts in DNA methylation and histone mark patterns, which promote tumor development and metastasis. Notably, the reversible nature of epigenetic alterations, as opposed to the permanence of genetic changes, positions the epigenetic machinery as a prime target in the discovery of novel therapeutics. Our review delves into the complexities of epigenetic regulation, exploring its profound effects on tumor initiation, metastatic behavior, metabolic pathways, and the tumor microenvironment. We place a particular emphasis on the dysregulation at each level of epigenetic modulation, including but not limited to, the aberrations in enzymes responsible for DNA methylation and histone modification, subunit loss or fusions in chromatin remodeling complexes, and the disturbances in higher-order chromatin structure. Finally, we also evaluate therapeutic approaches that leverage the growing understanding of chromatin dysregulation, offering new avenues for cancer treatment.
Collapse
Affiliation(s)
- Minzhi Gu
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Bo Ren
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Yuan Fang
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Jie Ren
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Xiaohong Liu
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Xing Wang
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Feihan Zhou
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Ruiling Xiao
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Xiyuan Luo
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Lei You
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Yupei Zhao
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| |
Collapse
|
4
|
Huang J, Liang L, Jiang S, Liu Y, He H, Sun X, Li Y, Xie L, Tao Y, Cong L, Jiang Y. BDH1-mediated LRRC31 regulation dependent on histone lysine β-hydroxybutyrylation to promote lung adenocarcinoma progression. MedComm (Beijing) 2023; 4:e449. [PMID: 38098610 PMCID: PMC10719427 DOI: 10.1002/mco2.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common form of lung cancer, with a consistently low 5-year survival rate. Therefore, we aim to identify key genes involved in LUAD progression to pave the way for targeted therapies in the future. BDH1 plays a critical role in the conversion between acetoacetate and β-hydroxybutyrate. The presence of β-hydroxybutyrate is essential for initiating lysine β-hydroxybutyrylation (Kbhb) modifications. Histone Kbhb at the H3K9 site is attributed to transcriptional activation. We unveiled that β-hydroxybutyrate dehydrogenase 1 (BDH1) is not only conspicuously overexpressed in LUAD, but it also modulates the overall intracellular Kbhb modification levels. The RNA sequencing analysis revealed leucine-rich repeat-containing protein 31 (LRRC31) as a downstream target gene regulated by BDH1. Ecologically expressed BDH1 hinders the accumulation of H3K9bhb in the transcription start site of LRRC31, consequently repressing the transcriptional expression of LRRC31. Furthermore, we identified potential BDH1 inhibitors, namely pimozide and crizotinib, which exhibit a synergistic inhibitory effect on the proliferation of LUAD cells exhibiting high expression of BDH1. In summary, this study elucidates the molecular mechanism by which BDH1 mediates LUAD progression through the H3K9bhb/LRRC31 axis and proposes a therapeutic strategy targeting BDH1-high-expressing LUAD, providing a fresh perspective for LUAD treatment.
Collapse
Affiliation(s)
- Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Lu Liang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Shiyao Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Yueying Liu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Xiaoyan Sun
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Yi Li
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Li Xie
- Department of Head and Neck SurgeryHunan Cancer Hospital, Xiangya School of Medicine, Central South UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of PathologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, School of Basic Medicine, Central South UniversityChangshaHunanChina
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| |
Collapse
|
5
|
Huang Y, Hu W, Huang S, Chu J, Liang Y, Tao Z, Wang G, Zhuang J, Zhang Z, Zhou X, Pan X. Taxonomy and anticancer potential of Streptomyces niphimycinicus sp. nov. against nasopharyngeal carcinoma cells. Appl Microbiol Biotechnol 2023; 107:6325-6338. [PMID: 37566161 DOI: 10.1007/s00253-023-12707-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Streptomyces species are ubiquitous, Gram-positive, spore-forming bacteria with the ability to produce various clinically relevant compounds. The strain 4503 T was isolated from mangrove sediments, showing morphological and chemical properties which were consistent with those of members of the genus Streptomyces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was primarily identified as members of the genus Streptomyces, sharing more than 99% sequence identity to Streptomyces yatensis DSM 41771 T, S. antimycoticus NBRC 12839 T, and S. melanosporofaciens NBRC 13061 T. Average nucleotide identities (ANI) and digital DNA-DNA hybridization (dDDH) values between strain 4503 T and its close relatives were all below 95-96% and 75% of the novel species threshold, respectively. Results from phylogenetic, genomic, phenotypic, and chemotaxonomic characteristics analyses confirmed that the isolate represented a novel species of the genus Streptomyces, for which the name Streptomyces niphimycinicus sp. nov. 4503 T (= MCCC 1K04557T = JCM 34996 T) is proposed. The bioassay-guided fractionation of the extract of strain 4503 T resulted in the isolation of a known compound niphimycin C, which showed cytotoxic activity against nasopharyngeal carcinoma (NPC) cell lines TW03 and 5-8F with half maximal inhibitory concentration (IC50) values of 12.24 µg/mL and 9.44 µg/mL, respectively. Further experiments revealed that niphimycin C not only exhibited the capacity of anti-proliferation, anti-metastasis, induction of cell cycle arrest, and apoptosis, but was also able to increase the reactive oxygen species (ROS) production and regulate several signaling pathways in NPC cells. KEY POINTS: • Strain 4503 T was classified as a novel species of Streptomyces. • Niphimycin C correlates with the cytotoxic effect of strain 4503 T against NPC cells. • Niphimycin C induces apoptosis, autophagic flux disruption and cell cycle arrest.
Collapse
Affiliation(s)
- Yiying Huang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Nanning, China
| | - Wenjin Hu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, China
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, China
| | - Jiemei Chu
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Yushan Liang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhanhua Tao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, China
| | - Guiwen Wang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, China
| | - Junlian Zhuang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Nanning, China.
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, Nanning, China.
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Nanning, China.
| | - Xinli Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, China.
| |
Collapse
|
6
|
Yalaza C, Antmen E, Canacankatan N, Tuncel Daloğlu F, Aytan H, Erden S. Role of acetyl-CoA acetyltransferase 1 expression in the molecular mechanism of adenomyosis. Turk J Obstet Gynecol 2023; 20:174-178. [PMID: 37667476 PMCID: PMC10478720 DOI: 10.4274/tjod.galenos.2023.05942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/07/2023] [Indexed: 09/06/2023] Open
Abstract
Objective Adenomyosis is a benign uterine illness characterized by endometrial gland and stromal invasion into the myometrium. Acetyl-CoA acetyltransferase 1 (ACAT1) is an enzyme localized in mitochondria that is involved in ketogenesis and ketolysis processes by reversibly catalyzing the formation of acetoacetyl-CoA from two acetyl-CoA molecules. The current study investigated the expression of the ACAT1 molecule in tissue samples of patients diagnosed with adenomyosis and healthy endometrial tissues. It is aimed to determine the differences in ACAT1 gene expression and in this way to discover the first information about the role of ACAT1 in the development and molecular mechanism of adenomyosis. Materials and Methods In the current retrospective study, formalin-fixed paraffin-embedded archival tissues were employed. A total of 76 patient samples were included in the study. Of these samples, 28 are adenomyotic tissue (Group I), 30 are eutopic endometrial tissue (Group II), and 18 are the Control Group. In these groups, the expression levels of the ACAT1 gene were determined by the reverse transcription-polymerase chain reaction method. Results When the expression results of the ACAT1 gene were evaluated, statistically significant differences were found between the groups (p<0.05). There was a difference between Group I-Group II and Group I-Control Group regarding the ACAT1 gene. No statistically significant change was observed between Group II and Control Group. It is a remarkable finding that the expression of ACAT1 in adenomyosis tissue is decreased compared with both eutopic endometrium and control groups tissues. Conclusion The results suggest that ACAT1 may be associated with the molecular pathogenesis of adenomyosis.
Collapse
Affiliation(s)
- Cem Yalaza
- Toros University, Vocational School of Health Services, Mersin, Turkey
| | - Efsun Antmen
- Mersin University Faculty of Pharmacy, Department of Biochemistry, Mersin, Turkey
| | - Necmiye Canacankatan
- Mersin University Faculty of Pharmacy, Department of Biochemistry, Mersin, Turkey
| | | | - Hakan Aytan
- Mersin University Faculty of Medicine, Department of Obstetrics and Gynecology, Mersin, Turkey
| | - Sema Erden
- Mersin University, Vocational School of Health Services, Mersin, Turkey
| |
Collapse
|
7
|
Hwang CY, Choe W, Yoon KS, Ha J, Kim SS, Yeo EJ, Kang I. Molecular Mechanisms for Ketone Body Metabolism, Signaling Functions, and Therapeutic Potential in Cancer. Nutrients 2022; 14:nu14224932. [PMID: 36432618 PMCID: PMC9694619 DOI: 10.3390/nu14224932] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The ketone bodies (KBs) β-hydroxybutyrate and acetoacetate are important alternative energy sources for glucose during nutrient deprivation. KBs synthesized by hepatic ketogenesis are catabolized to acetyl-CoA through ketolysis in extrahepatic tissues, followed by the tricarboxylic acid cycle and electron transport chain for ATP production. Ketogenesis and ketolysis are regulated by the key rate-limiting enzymes, 3-hydroxy-3-methylglutaryl-CoA synthase 2 and succinyl-CoA:3-oxoacid-CoA transferase, respectively. KBs participate in various cellular processes as signaling molecules. KBs bind to G protein-coupled receptors. The most abundant KB, β-hydroxybutyrate, regulates gene expression and other cellular functions by inducing post-translational modifications. KBs protect tissues by regulating inflammation and oxidative stress. Recently, interest in KBs has been increasing due to their potential for treatment of various diseases such as neurological and cardiovascular diseases and cancer. Cancer cells reprogram their metabolism to maintain rapid cell growth and proliferation. Dysregulation of KB metabolism also plays a role in tumorigenesis in various types of cancer. Targeting metabolic changes through dietary interventions, including fasting and ketogenic diets, has shown beneficial effects in cancer therapy. Here, we review current knowledge of the molecular mechanisms involved in the regulation of KB metabolism and cellular signaling functions, and the therapeutic potential of KBs and ketogenic diets in cancer.
Collapse
Affiliation(s)
- Chi Yeon Hwang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| | - Insug Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| |
Collapse
|
8
|
Zhong X, Yang Y, Li B, Liang P, Huang Y, Zheng Q, Wang Y, Xiao X, Mo Y, Zhang Z, Zhou X, Huang G, Zhao W. Downregulation of SLC27A6 by DNA Hypermethylation Promotes Proliferation but Suppresses Metastasis of Nasopharyngeal Carcinoma Through Modulating Lipid Metabolism. Front Oncol 2022; 11:780410. [PMID: 35047398 PMCID: PMC8761909 DOI: 10.3389/fonc.2021.780410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid is the building block and an important source of energy, contributing to the malignant behavior of tumor cells. Recent studies suggested that lipid droplets (LDs) accumulations were associated with nasopharyngeal carcinoma (NPC) progression. Solute carrier family 27 member 6 (SLC27A6) mediates the cellular uptake of long-chain fatty acid (LCFA), a necessary lipid component. However, the functions of SLC27A6 in NPC remain unknown. Here, we found a significant reduction of SLC27A6 mRNA in NPC tissues compared with normal nasopharyngeal epithelia (NNE). The promoter methylation ratio of SLC27A6 was greater in NPC than in non-cancerous tissues. The demethylation reagent 5-aza-2'-deoxycytidine (5-aza-dC) remarkably restored the mRNA expression of SLC27A6, suggesting that this gene was downregulated in NPC owing to DNA promoter hypermethylation. Furthermore, SLC27A6 overexpression level in NPC cell lines led to significant suppression of cell proliferation, clonogenicity in vitro, and tumorigenesis in vivo. Higher SLC27A6 expression, on the other hand, promoted NPC cell migration and invasion. In particular, re-expression of SLC27A6 faciliated epithelial-mesenchymal transition (EMT) signals in xenograft tumors. Furthermore, we observed that SLC27A6 enhanced the intracellular amount of triglyceride (TG) and total cholesterol (T-CHO) in NPC cells, contributing to lipid biosynthesis and increasing metastatic potential. Notably, the mRNA level of SLC27A6 was positively correlated with cancer stem cell (CSC) markers, CD24 and CD44. In summary, DNA promoter hypermethylation downregulated the expression of SLC27A6. Furthermore, re-expression of SLC27A6 inhibited the growth capacity of NPC cells but strengthened the CSC markers. Our findings revealed the dual role of SLC27A6 in NPC and shed novel light on the link between lipid metabolism and CSC maintenance.
Collapse
Affiliation(s)
- Xuemin Zhong
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.,Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Yanping Yang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.,Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Bo Li
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pan Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.,Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Yiying Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qian Zheng
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Yifang Wang
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Guangwu Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.,Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Weilin Zhao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Epigenetic inactivation of ACAT1 promotes epithelial-mesenchymal transition of clear cell renal cell carcinoma. Genes Genomics 2022; 44:487-497. [PMID: 34985712 DOI: 10.1007/s13258-021-01211-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/20/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Acetyl-CoA acyltransferase 1 (ACAT1) is a key enzyme catalyzing the production of mitochondrial ketone bodies. We have shown that ACAT1 is down-regulated in kidney renal clear cell carcinoma (KIRC) previously. OBJECTIVE To investigate the reasons for downregulation of ACAT1 in KIRC and explore the underlying mechanisms involved in metastatic inhibition regulated by ACAT1. METHODS The Gene Expression Omnibus (GEO) database was queried for meta-analysis of ACAT1 mRNA expression in KIRC. The UALCAN website was used to compare the methylation levels of the ACAT1 promoter region in KIRC and normal tissues. RT-qPCR was used to quantitate ACAT1 transcription levels. The GCBI and Tarbase V.8 databases were used to predict miRNAs that may target the mRNA of ACAT1. The correlation between mRNA expression of ACAT1, MMP7 (matrix metallopeptidase 7), CDH1 (E-cadherin), EpCAM (epithelial cell adhesion molecule), and VIM (vimentin) was analyzed. Extracellular MMP7 protein was quantitated using an ELISA assay. RESULTS The methylation level of the ACAT1 promoter region in KIRC was significantly higher than that in the normal kidney tissues. The ACAT1 mRNA expression in the KIRC cell lines was restored after treatment with 5-aza-dC (p < 0.05). MiR-21-5p is a conserved microRNA targeting ACAT1. It is expressed at a significantly higher level in KIRC than in normal tissues (p < 0.001). MiR-21-5p miRNA expression negatively correlates with ACAT1 mRNA expression. The expression of miR-21-5p is higher at the T3-T4 stages and in the histologic grades G3-G4. Patients with high miR-21-5p expression tended to have lower overall survival, suggesting that miR-21-5p could serve as a potentially valuable diagnostic biomarker for KIRC (AUC = 0.957; p < 0.001). A mimetic of miR-21-5p inhibited the expression of ACAT1 mRNA and protein. In addition, ACAT1 mRNA expression positively correlates with CDH1 and EpCAM but is negatively correlated with VIM. Overexpression of ACAT1 suppresses the secretion of MMP7 in KIRC cells. CONCLUSION Expression of ACAT1 in KIRC is controlled at two levels, firstly by the hypermethylation of the ACAT1 promoter region and secondly by overexpression of miR-21-5p. Downregulation of ACAT1 expression correlates with epithelial-mesenchymal transition (EMT).
Collapse
|