1
|
Pham TD, Tsunoyama T. Exploring Extravasation in Cancer Patients. Cancers (Basel) 2024; 16:2308. [PMID: 39001371 PMCID: PMC11240416 DOI: 10.3390/cancers16132308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Extravasation, the unintended leakage of intravenously administered substances, poses significant challenges in cancer treatment, particularly during chemotherapy and radiotherapy. This comprehensive review explores the pathophysiology, incidence, risk factors, clinical presentation, diagnosis, prevention strategies, management approaches, complications, and long-term effects of extravasation in cancer patients. It also outlines future directions and research opportunities, including identifying gaps in the current knowledge and proposing areas for further investigation in extravasation prevention and management. Emerging technologies and therapies with the potential to improve extravasation prevention and management in both chemotherapy and radiotherapy are highlighted. Such innovations include advanced vein visualization technologies, smart catheters, targeted drug delivery systems, novel topical treatments, and artificial intelligence-based image analysis. By addressing these aspects, this review not only provides healthcare professionals with insights to enhance patient safety and optimize clinical practice but also underscores the importance of ongoing research and innovation in improving outcomes for cancer patients experiencing extravasation events.
Collapse
Affiliation(s)
- Tuan D. Pham
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK
| | | |
Collapse
|
2
|
Somay E, Topkan E, Bascil S, Ozturk D, Senyurek S, Durankus NK, Selek U. Topkan's CARWL Index Efficiently Predicts the Radiation-Induced Tooth Loss Rates in Radically Treated Locally Advanced Nasopharyngeal Cancer Patients. Technol Cancer Res Treat 2024; 23:15330338241292234. [PMID: 39420731 PMCID: PMC11490988 DOI: 10.1177/15330338241292234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE To assess the usefulness of the novel CARWL index in predicting radiation-induced tooth loss (RITL) rates in locally advanced nasopharyngeal cancer (LA-NPC) patients undergoing concurrent chemoradiotherapy (C-CRT). METHODS The study retrospectively examined data from 323 LA-NPC patients. The patients were divided into two groups based on cutoff values for CAR and weight loss (WL). The ideal cutoff for RITL was 3.0 g/dL [AUC: 83.0%, sensitivity: 83.6%, specificity: 81.4%, J-index: 0.650]. CARWL index was created by combining pretreatment CAR and WL status (WL ≤ 5.0% vs > 5.0%, resulting in four groups: Group 1: CAR < 3.0 and WL ≤ 5.0%, Group 2: CAR < 3.0 and WL > 5.0%, Group 3: CAR ≥ 3.0 and WL ≤ 5.0%, and Group 4: CAR > 3.0 and WL > 5.0%. RESULTS RITL was diagnosed in 67.2% of patients. Since the RITL rates of Groups 2 and 3 were statistically indistinguishable, we combined them and created the three-tiered CARWL score groups: CARWL-0: CAR < 3.0 and WL ≤ 5.0%; CARWL-1: CAR < 3.0 and WL > 5.0%, or CAR ≥ 3.0 and WL ≤ 5.0%; and CARWL-2: CAR > 3.0 and WL > 5.0%. Comparative analysis revealed that the RITL rates gradually and significantly increased from CARWL-0 to CARWL-2 score groups (49.4% vs 64.7% vs 83.0%; P <0.001) despite similar baseline disease and patient characteristics. Results of the multivariate analysis showed that higher CARWL score groups were independent and significant predictors of increased RITL rates (p < 0.001). CONCLUSION Present results suggest that the novel CARWL index is a reliable biomarker for predicting RITL incidence in LA-NPC patients.
Collapse
Affiliation(s)
- Efsun Somay
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Baskent University, Ankara, Turkey
| | - Erkan Topkan
- Department of Radiation Oncology, Faculty of Medicine, Baskent University, Adana, Turkey
| | - Sibel Bascil
- Department of Periodontology, Faculty of Dentistry, Baskent University, Ankara, Turkey
| | - Duriye Ozturk
- Department of Radiation Oncology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Sukran Senyurek
- Department of Radiation Oncology, School of Medicine, Koc University, Istanbul, Turkey
| | | | - Ugur Selek
- Department of Radiation Oncology, School of Medicine, Koc University, Istanbul, Turkey
| |
Collapse
|
3
|
Liu W, Zhang K, Nan J, Lei P, Sun Y, Hu Y. Nano artificial periosteum PCL/Ta/ZnO accelerates repair of periosteum via antibacterial, promoting vascularization and osteogenesis. BIOMATERIALS ADVANCES 2023; 154:213624. [PMID: 37716333 DOI: 10.1016/j.bioadv.2023.213624] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
The periosteum plays a critical role in bone development, shaping, remodeling, and fracture healing due to its abundance of osteoprogenitor cells, osteoblasts, and capillary network. However, the role of periosteum in bone injury healing has been underestimated, thus there is an urgent need to develop a multifunctional artificial periosteum that mimics the natural one. To tackle this issue, electrospinning technology was employed to fabricate an artificial periosteum composed of Poly-ε-caprolactone (PCL) doped with tantalum (Ta) and zinc oxide (ZnO) nanoparticles to enhance its antibacterial, osteogenic, and angiogenic properties. The in vitro cell experiments have demonstrated that the PCL/Ta/ZnO artificial periosteum exhibits excellent biocompatibility and can effectively facilitate osteogenic differentiation of BMSCs as well as angiogenic differentiation of EPCs. Antibacterial experiments have demonstrated the excellent bactericidal effects of PCL/Ta/ZnO artificial periosteum against both S. aureus and E. coli. The subcutaneous infection and critical-sized skull bone defect models have validated its in vivo properties of antibacterial activity, promotion of osteogenesis, and angiogenic potential. The PCL/Ta/ZnO artificial periosteum demonstrates remarkable efficacy in infection control and favorable immunomodulation, thereby achieving rapid vascularized bone repair. In conclusion, the utilization of PCL/Ta/ZnO tissue-engineered periosteum has been demonstrated to exhibit antibacterial properties, pro-vascularization effects, and promotion of osteogenesis at the site of bone defects. This promising approach could potentially offer effective treatment for bone defects.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410008, China
| | - Kai Zhang
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiangyu Nan
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Lei
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China.
| | - Yan Sun
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China.
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China.
| |
Collapse
|
4
|
Bedi R, Ahmad A, Horbal P, Mar PL. Radiation-associated Arrhythmias: Putative Pathophysiological Mechanisms, Prevalence, Screening and Management Strategies. Arrhythm Electrophysiol Rev 2023; 12:e24. [PMID: 37680206 PMCID: PMC10481379 DOI: 10.15420/aer.2022.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/16/2023] [Indexed: 09/09/2023] Open
Abstract
Radiation-associated cardiovascular disease, an increasingly recognised disease process, is a significant adverse effect of radiation therapy for common malignancies that involve the chest, and include lymphomas, lung, mediastinal and breast cancers. Two factors contribute to the increasing incidence of radiation-associated cardiovascular disease: advances in malignancy detection and the improved survival of cancer patients, by which many symptoms of radiation-associated cardiovascular disease, specifically radiation-associated arrhythmias, present years and/or decades following initial radiotherapy. We present a focused overview of the currently understood pathophysiology, prevalence and management strategies of radiation-associated arrhythmias, which include bradyarrhythmias, tachyarrhythmias and autonomic dysfunction.
Collapse
Affiliation(s)
- Rohil Bedi
- Department of Internal Medicine, Saint Louis University School of Medicine St Louis, Missouri, US
| | - Ali Ahmad
- Department of Internal Medicine, Saint Louis University School of Medicine St Louis, Missouri, US
| | - Piotr Horbal
- Department of Internal Medicine, Saint Louis University School of Medicine St Louis, Missouri, US
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University Columbus, Ohio, US
| | - Philip L Mar
- Division of Cardiology, Department of Internal Medicine, Saint Louis University School of Medicine St Louis, Missouri, US
| |
Collapse
|
5
|
Arcovito G, Palomba A, Gallo O, Franchi A. The Histological Background of Recurrence in Laryngeal Squamous Cell Carcinoma: An Insight into the Modifications of Tumor Microenvironment. Cancers (Basel) 2023; 15:3259. [PMID: 37370868 DOI: 10.3390/cancers15123259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Recurrent laryngeal carcinoma presents differences from the primary tumor that largely depend on the treatment. In this article, we review the histologic and molecular treatment-induced changes that may affect the diagnosis of recurrent laryngeal carcinoma, the assessment of predictive markers, and the response to treatment with immune checkpoint inhibitors. Radiotherapy induces profound modifications that are strictly related to necrosis of different tissue components, fibrosis, and damage of the tumor vessels. Postradiotherapy recurrent/persistent laryngeal squamous cell carcinoma typically presents a discohesive growth pattern within a fibrotic background associated with significant changes of the tumor immune microenvironment, with both important immunosuppressive and immunostimulatory effects. Overall, the increase of immunoregulatory cells and immune checkpoints such as CTLA-4, TIM-3, PD-1, and PD-L1 induced by radiotherapy and chemotherapy strongly supports the use of immune checkpoint inhibitors in recurrent/persistent laryngeal carcinoma. Future studies aiming to identify predictive factors of the response to immune checkpoint inhibitors should consider such treatment-induced modifications.
Collapse
Affiliation(s)
- Giorgia Arcovito
- Section of Pathology, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
| | - Annarita Palomba
- Unit of Histopathology and Molecular Diagnostic, Azienda Ospedaliera Universitaria Careggi, 50139 Florence, Italy
| | - Oreste Gallo
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Alessandro Franchi
- Section of Pathology, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
6
|
Chen L, Shi V, Wang S, Freeman R, Ruiz F, Jayachandran K, Zhang J, Cosper P, Sun L, Luke CJ, Spina C, Grigsby PW, Schwarz JK, Markovina S. SCCA1/SERPINB3 promotes suppressive immune environment via STAT-dependent chemokine production, blunting the therapy-induced T cell responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526675. [PMID: 36778224 PMCID: PMC9915608 DOI: 10.1101/2023.02.01.526675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Radiotherapy is a commonly used cancer treatment; however, patients with high serum squamous cell carcinoma antigen (SCCA1/SERPINB3) are associated with resistance and poor prognosis. Despite being a strong clinical biomarker, the modulation of SERPINB3 in tumor immunity is poorly understood. We investigated the microenvironment of SERPINB3 high tumors through RNAseq of primary cervix tumors and found that SERPINB3 was positively correlated with CXCL1/8, S100A8/A9 and myeloid cell infiltration. Induction of SERPINB3 in vitro resulted in increased CXCL1/8 and S100A8/A9 production, and supernatants from SERPINB3-expressing cultures attracted monocytes and MDSCs. In murine tumors, the orthologue mSerpinB3a promoted MDSC, TAM, and M2 macrophage infiltration contributing to an immunosuppressive phenotype, which was further augmented upon radiation. Radiation-enhanced T cell response was muted in SERPINB3 tumors, whereas Treg expansion was observed. A STAT-dependent mechanism was implicated, whereby inhibiting STAT signaling with ruxolitinib abrogated suppressive chemokine production. Patients with elevated pre-treatment serum SCCA and high pSTAT3 had increased intratumoral CD11b+ myeloid cell compared to patients with low SCCA and pSTAT3 cohort that had overall improved cancer specific survival after radiotherapy. These findings provide a preclinical rationale for targeting STAT signaling in tumors with high SERPINB3 to counteract the immunosuppressive microenvironment and improve response to radiation.
Collapse
|
7
|
Cui W, Hull L, Zizzo A, Wang L, Lin B, Zhai M, Xiao M. Pharmacokinetic Study of rhIL-18BP and Its Effect on Radiation-Induced Cytokine Changes in Mouse Serum and Intestine. TOXICS 2022; 11:toxics11010035. [PMID: 36668761 PMCID: PMC9863660 DOI: 10.3390/toxics11010035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 05/14/2023]
Abstract
Administration of recombinant human IL-18 binding protein (rhIL-18BP), a natural antagonist of IL-18, significantly increased mouse survival after lethal doses of irradiation. To further understand the roles of IL-18BP in radiation mitigation, we studied the pharmacokinetic (PK) parameters of rhIL-18BP, and the serum and intestinal cytokine changes in CD2F1 mice treated with vehicle or rhIL-18BP after 9.0 Gy total body irradiation (TBI). For the PK study, non-compartmental pharmacokinetic analysis was performed using PKsolver. Serum and intestine specimens were collected to measure 44-cytokine levels. Principal component analysis showed a clear separation of the non-irradiated samples from the irradiated samples; and partial separation with or without rhIL-18BP treatment. Cytokine clusters that were significantly correlated in the serum or intestine, respectively were identified. On the individual cytokine levels, serum and intestinal cytokines that were significantly changed by irradiation and rhIL-18BP treatment were identified. Finally, cytokines that were significantly correlated between their serum and intestinal levels were identified. The current study established the PK parameters of rhIL-18BP in mice, identified significantly changed cytokines in mouse serum and intestine after radiation exposure and rhIL-18BP treatment. Current data provide critical insights into IL-18BP's mechanism of action as a radiation mitigator.
Collapse
Affiliation(s)
- Wanchang Cui
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence: (W.C.); (M.X.); Tel.: +1-301-295-0695 (W.C.); +1-301-295-2597 (M.X.)
| | - Lisa Hull
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Alex Zizzo
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Li Wang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Bin Lin
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Min Zhai
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Mang Xiao
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Correspondence: (W.C.); (M.X.); Tel.: +1-301-295-0695 (W.C.); +1-301-295-2597 (M.X.)
| |
Collapse
|
8
|
Shin E, Kim D, Choi YY, Youn H, Seong KM, Youn B. LDR-adapted liver-derived cytokines have potential to induce atherosclerosis. Int J Radiat Biol 2022; 99:791-806. [PMID: 36383216 DOI: 10.1080/09553002.2023.2145028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Atherosclerosis is a lipid-driven chronic inflammatory disease that causes cardiovascular diseases (CVD). The association between radiation and atherosclerosis has already been demonstrated; however, the effects of low-dose radiation (LDR) exposure on atherosclerosis have not been reported. Our study aims to propose that LDR may cause atherosclerosis phenotypes by the upregulation of plasminogen activator inhibitor-1 (PAI-1) and downregulation of androgen receptor (AR), which are cytokines secreted from the liver. METHODS Low-density lipoprotein (LDL) receptor deficient (Ldlr-/-) mice were irradiated at 50 mGy, 100 mGy, and 1000 mGy. LDR irradiated Ldlr-/- mice serum was analyzed by cytokine array and proteomics with silver staining. Oil Red O staining and BODIPY staining were performed to determine lipid accumulation in Human umbilical vein endothelial cells (HUVECs). Foam cell formation and monocyte recruitment were assessed through co-culture system with HUVECs and THP-1 cells. RESULTS After irradiation with LDR (100 mGy) the mice showed atherosclerotic phenotypes and through analysis results, we selected regulated cytokines, PAI-1 and AR, and found that these were changed in the liver. LDR-regulated cytokines have the potential to be transported to endothelial cells and induce lipid accumulation, inflammation of monocytes, increased oxidized low-density lipoprotein (oxLDL) and foam cells formation, that were series of phenotypes lead to plaque formation in endothelial cells and induces atherosclerosis. As a further aspect of this study, testosterone undecanoate (TU) was found to pharmacologically inhibit a series of atherosclerotic phenotypes exhibited by LDR. This study suggests a role for PAI-1 and AR in regulating the development of atherosclerosis after LDR exposure. Targeting PAI-1 and AR could serve as an attractive strategy for the management of atherosclerosis following LDR exposure.
Collapse
Affiliation(s)
- Eunguk Shin
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - Dahye Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - You Yeon Choi
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Ki Moon Seong
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
- Department of Biological Sciences, Pusan National University, Busan, Korea
| |
Collapse
|
9
|
Ji H, Zhou Z. A ‘Hybrid’ Radiotherapy Regimen Designed for Immunomodulation: Combining High-Dose Radiotherapy with Low-Dose Radiotherapy. Cancers (Basel) 2022; 14:cancers14143505. [PMID: 35884565 PMCID: PMC9319172 DOI: 10.3390/cancers14143505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Radiotherapy is an important cancer treatment. Aside from its direct killing effect, it also affects anti-tumor immunity. However, radiotherapy’s immune effect is not clear; it depends on the dose and fraction, cancer type, combined immunotherapy, and many other factors. Studies have focused on the optimal radiotherapy regimen to stimulate anti-tumor immunity, but conflicts exist, especially regarding the best radiation dose and fractions. Interestingly, high-dose radiotherapy and low-dose radiotherapy have complementary effects on stimulating anti-tumor immunity. Preclinical studies supporting this finding have accumulated, but gaps between theory and clinical practice still exist. This review summarizes the evidence supporting the use of this ‘hybrid’ radiotherapy approach to effectively stimulate anti-tumor immunity, explains the immune mechanisms of this combination, raises questions that must be addressed in clinical practice, and provides ideas for designing individualized treatment to increase efficiency in stimulating anti-tumor immunity using high-dose plus low-dose radiotherapy. Abstract Radiotherapy (RT) affects anti-tumor immunity. However, the exact impact of RT on anti-tumor immune response differs among cancer types, RT dose and fractions, patients’ innate immunity, and many other factors. There are conflicting findings on the optimal radiation dose and fractions to stimulate effective anti-tumor immunity. High-dose radiotherapy (HDRT) acts in the same way as a double-edged sword in stimulating anti-tumor immunity, while low-dose radiotherapy (LDRT) seems to play a vital role in modulating the tumor immune microenvironment. Recent preclinical data suggest that a ‘hybrid’ radiotherapy regimen, which refers to combining HDRT with LDRT, can reap the advantages of both. Clinical data have also indicated a promising potential. However, there are still questions to be addressed in order to put this novel combination therapy into clinical practice. For example, the selection of treatment site, treatment volume, the sequencing of high-dose radiotherapy and low-dose radiotherapy, combined immunotherapy, and so on. This review summarizes the current evidence supporting the use of HDRT + LDRT, explains possible immune biology mechanisms of this ‘hybrid’ radiotherapy, raises questions to be considered when working out individualized treatment plans, and lists possible avenues to increase efficiency in stimulating anti-tumor immunity using high-dose plus low-dose radiotherapy.
Collapse
|
10
|
Study on the Correlation between Pain and Cytokine Expression in the Peripheral Blood of Patients with Bone Metastasis of Malignant Cancer Treated Using External Radiation Therapy. Pain Res Manag 2022; 2022:1119014. [PMID: 35845981 PMCID: PMC9287001 DOI: 10.1155/2022/1119014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/21/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022]
Abstract
The incidence of cancer is increasing worldwide on a yearly basis, with the number of patients with bone metastases also increasing annually. Events associated with bone metastases can seriously affect patient quality of life, through pain, hypercalcemia, bone marrow regeneration disorders, and spinal cord compression. In this nonrandomized controlled clinical trial study, we focused on the relationship between bone metastasis, pain, and cytokines before and after radiotherapy. We hypothesized that radiotherapy alters the cytokine profile of the local bone environment. Combined with the analgesic effects of radiotherapy, certain cytokines may be very sensitive to radiation. External radiation therapy is commonly used to treat cancer patients with bone metastases and can effectively relieve metastasis-related pain, although its underlying mechanisms have not been fully elucidated. For this case-control study, we recruited 30 cancer patients with bone metastasis and 30 healthy individuals. Peripheral venous blood from healthy individuals was collected. The clinical characteristics and peripheral venous blood were collected from patients one week before and one week after radiotherapy. The preradiotherapy and postradiotherapy pain scores, quality of life (QOL), and blood cytokine profiles of the patients to that of the controls were collected to identify pain-related cytokines. Finally, the pain score and the quality of life score improved significantly after radiotherapy. Moreover, the preradiotherapy and postradiotherapy blood cytokine profiles of the patients showed significant differences, indicating that the analgesic effect of radiotherapy against bone metastases is mediated via altered cytokine production. Furthermore, some cytokines were more sensitive to radiotherapy. The levels of MIP-1δ, MCP-2, TIMP-1, RANTES, IGFBP3, and TNF-α showed significant differences in the pairwise comparative analysis and may therefore mediate pain associated with bone metastasis.
Collapse
|
11
|
Lucia F, Geier M, Schick U, Bourbonne V. Narrative Review of Synergistics Effects of Combining Immunotherapy and Stereotactic Radiation Therapy. Biomedicines 2022; 10:biomedicines10061414. [PMID: 35740435 PMCID: PMC9219862 DOI: 10.3390/biomedicines10061414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Stereotactic radiotherapy (SRT) has become an attractive treatment modality in full bloom in recent years by presenting itself as a safe, noninvasive alternative to surgery to control primary or secondary malignancies. Although the focus has been on local tumor control as the therapeutic goal of stereotactic radiotherapy, rare but intriguing observations of abscopal (or out-of-field) effects have highlighted the exciting possibility of activating antitumor immunity using high-dose radiation. Furthermore, immunotherapy has revolutionized the treatment of several types of cancers in recent years. However, resistance to immunotherapy often develops. These observations have led researchers to combine immunotherapy with SRT in an attempt to improve outcomes. The benefits of this combination would come from the stimulation and suppression of various immune pathways. Thus, in this review, we will first discuss the immunomodulation induced by SRT with the promising results of preclinical studies on the changes in the immune balance observed after SRT. Then, we will discuss the opportunities and risks of the combination of SRT and immunotherapy with the preclinical and clinical data available in the literature. Furthermore, we will see that many perspectives are conceivable to potentiate the synergistic effects of this combination with the need for prospective studies to confirm the encouraging data.
Collapse
Affiliation(s)
- François Lucia
- Radiation Oncology Department, University Hospital, 29200 Brest, France; (U.S.); (V.B.)
- LaTIM, INSERM, UMR 1101, University of Brest, 29200 Brest, France
- Correspondence:
| | - Margaux Geier
- Medical Oncology Department, University Hospital, 29200 Brest, France;
| | - Ulrike Schick
- Radiation Oncology Department, University Hospital, 29200 Brest, France; (U.S.); (V.B.)
- LaTIM, INSERM, UMR 1101, University of Brest, 29200 Brest, France
| | - Vincent Bourbonne
- Radiation Oncology Department, University Hospital, 29200 Brest, France; (U.S.); (V.B.)
- LaTIM, INSERM, UMR 1101, University of Brest, 29200 Brest, France
| |
Collapse
|
12
|
Ottone OK, Kim C, Collins JA, Risbud MV. The cGAS-STING Pathway Affects Vertebral Bone but Does Not Promote Intervertebral Disc Cell Senescence or Degeneration. Front Immunol 2022; 13:882407. [PMID: 35769461 PMCID: PMC9235924 DOI: 10.3389/fimmu.2022.882407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
The DNA-sensing cGAS-STING pathway promotes the senescence-associated secretory phenotype (SASP) and mediates type-I interferon inflammatory responses to foreign viral and bacterial DNA as well as self-DNA. Studies of the intervertebral disc in humans and mice demonstrate associations between aging, increased cell senescence, and disc degeneration. Herein we assessed the role of STING in SASP promotion in STING gain- (N153S) and loss-of-function mouse models. N153S mice evidenced elevated circulating levels of proinflammatory markers including IL-1β, IL-6, and TNF-α, showed elevated monocyte and macrophage abundance in the vertebral marrow, and exhibited a mild trabecular and cortical bone phenotype in caudal vertebrae. Interestingly, despite systemic inflammation, the structural integrity of the disc and knee articular joint remained intact, and cells did not show a loss of their phenotype or elevated SASP. Transcriptomic analysis of N153S tissues demonstrated an upregulated immune response by disc cells, which did not closely resemble inflammatory changes in human tissues. Interestingly, STING-/- mice also showed a mild vertebral bone phenotype, but the absence of STING did not reduce the abundance of SASP markers or improve the age-associated disc phenotype. Overall, the analyses of N153S and STING-/- mice suggest that the cGAS-STING pathway is not a major contributor to SASP induction and consequent disc aging and degeneration but may play a minor role in the maintenance of trabecular bone in the vertebrae. This work contributes to a growing body of work demonstrating that systemic inflammation is not a key driver of disc degeneration.
Collapse
Affiliation(s)
- Olivia K. Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Cheeho Kim
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Makarand V. Risbud,
| |
Collapse
|
13
|
Zhou Y, Ke P, Bao X, Wu H, Xia Y, Zhang Z, Zhong H, Dai Q, Wu L, Wang T, Lin M, Li Y, Jiang X, Yang Q, Lu Y, Zhong X, Han M, Gao J. Peptide nano-blanket impedes fibroblasts activation and subsequent formation of pre-metastatic niche. Nat Commun 2022; 13:2906. [PMID: 35614076 PMCID: PMC9132894 DOI: 10.1038/s41467-022-30634-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
There is evidence to suggest that the primary tumor induces the formation of a pre-metastatic niche in distal organs by stimulating the production of pro-metastatic factors. Given the fundamental role of the pre-metastatic niche in the development of metastases, interruption of its formation would be a promising strategy to take early action against tumor metastasis. Here we report an enzyme-activated assembled peptide FR17 that can serve as a “flame-retarding blanket” in the pre-metastatic niche specifically to extinguish the “fire” of tumor-supportive microenvironment adaption. We show that the in-situ assembled peptide nano-blanket inhibits fibroblasts activation, suppressing the remodeling of the metastasis-supportive host stromal tissue, and reversing vascular destabilization and angiogenesis. Furthermore, we demonstrate that the nano-blanket prevents the recruitment of myeloid cells to the pre-metastatic niche, regulating the immune-suppressive microenvironment. We show that FR17 administration effectively inhibits the formation of the pulmonary pre-metastatic niche and postoperative metastasis, offering a therapeutic strategy against pre-metastatic niche formation. Primary tumors “spread the spark” by establishing a pre-metastatic niche. Here the authors develop an in-situ assembled peptide FR17 to serve as a “flame-retarding blanket” to extinguish the “fire” of the pre-metastatic microenvironment.
Collapse
Affiliation(s)
- Yi Zhou
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Peng Ke
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.,Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, PR China
| | - Xiaoyan Bao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Honghui Wu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Yiyi Xia
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Zhentao Zhang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Haiqing Zhong
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Qi Dai
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.,Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Linjie Wu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Tiantian Wang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Mengting Lin
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Yaosheng Li
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Xinchi Jiang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Qiyao Yang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.,Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Yiying Lu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Xincheng Zhong
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Min Han
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China. .,Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China. .,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| | - Jianqing Gao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China. .,Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China. .,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| |
Collapse
|
14
|
Li R, Wang H, Liang Q, Chen L, Ren J. Radiotherapy for glioblastoma: clinical issues and nanotechnology strategies. Biomater Sci 2022; 10:892-908. [PMID: 34989724 DOI: 10.1039/d1bm01401c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults with poor prognosis. Despite the current state of knowledge on its genetic characteristics, relatively little progress has been made in improving the treatment of patients with this fatal disease. Radiotherapy (RT) has been identified as a crucial treatment for GBM following surgical resection to improve both local control and survival. Unfortunately, radiotherapy resistance is frequently observed in GBM patients, which is the major reason for the high mortality rate of cancer patients. Radioresistance of GBM is often multifactorial and heterogeneous, and associated with the recurrence of GBM after surgery. Nanotechnology has gained increasing attention and has already been investigated for optimization of radiosensitization due to the unique properties of nanobiomaterials, such as photoelectric decay characteristics or potential as carriers for drug delivery to the central nervous system. A large body of preclinical data has accumulated over the past several years, in which nanotechnology-based strategies exhibit promising potential to enhance the radiosensitivity of GBM, both in cellular and animal models. In this review, we summarize the mechanisms of GBM radioresistance, including tumor cell-intrinsic factors as well as tumor microenvironment (TME). We further discuss current nano-biotechnology-based radiosensitizer in the treatment of GBM, summarize the latest findings, highlight challenges, and put forward prospects for the future of nano-radiosensitizers. These data suggest that nanotechnology has the potential to address many of the clinical challenges and nanobiomaterials would become promising next-generation radiotherapy sensitizers for GBM treatment.
Collapse
Affiliation(s)
- Ruiqi Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Haihong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Qing Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Lian Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| |
Collapse
|
15
|
Trosko JE. The Concept of "Cancer Stem Cells" in the Context of Classic Carcinogenesis Hypotheses and Experimental Findings. Life (Basel) 2021; 11:1308. [PMID: 34947839 PMCID: PMC8708536 DOI: 10.3390/life11121308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
In this Commentary, the operational definition of cancer stem cells or cancer initiating cells includes the ability of certain cells, found in a heterogeneous mixture of cells within a tumor, which are able to sustain growth of that tumor. However, that concept of cancer stem cells does not resolve the age-old controversy of two opposing hypotheses of the origin of the cancer, namely the stem cell hypothesis versus the de-differentiation or re-programming hypothesis. Moreover, this cancer stem concept has to take into account classic experimental observations, techniques, and concepts, such as the multi-stage, multi-mechanism process of carcinogenesis; roles of mutagenic, cytotoxic and epigenetic mechanisms; the important differences between errors of DNA repair and errors of DNA replication in forming mutations; biomarkers of known characteristics of normal adult organ-specific stem cells and of cancer stem cells; and the characteristics of epigenetic mechanisms involved in the carcinogenic process. In addition, vague and misleading terms, such as carcinogens, immortal and normal cells have to be clarified in the context of current scientific facts. The ultimate integration of all of these historic factors to provide a current understanding of the origin and characteristics of a cancer stem cell, which is required for a rational strategy for prevention and therapy for cancer, does not follow a linear path. Lastly, it will be speculated that there exists evidence of two distinct types of cancer stem cells, one that has its origin in an organ-specific adult stem cell that is 'initiated' in the stem cell stage, expressing the Oct4A gene and not expressing any connexin gene or having functional gap junctional intercellular communication (GJIC). The other cancer stem cell is derived from a stem cell that is initiated early after the Oct4A gene is suppressed and the connexin gene is expressed, which starts early differentiation, but it is blocked from terminal differentiation.
Collapse
Affiliation(s)
- James E Trosko
- Department of Pediatrics/Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 048864, USA
| |
Collapse
|
16
|
Cailleteau A, Touzeau C, Jamet B, Guimas V, Jouglar E, Supiot S. Cytokine release syndrome and tumor lysis syndrome in a multiple myeloma patient treated with palliative radiotherapy: A case report and review of the literature. Clin Transl Radiat Oncol 2021; 32:24-28. [PMID: 34816023 PMCID: PMC8591462 DOI: 10.1016/j.ctro.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/27/2022] Open
Abstract
We present the case of a 53-year-old woman treated with analgesic radiotherapy for a multiple myeloma bone lesion of the forearm. After a first fraction of 5 Gray (Gy), she presented with an acute respiratory syndrome with fever a few hours after the treatment. The same symptoms occurred after the second fraction 3 days later. The patient recovered quickly thanks to intravenous hydration and suspension of the radiotherapy. Biological tests revealed a tumor lysis syndrome. We concluded that the clinical symptoms could be defined as cytokine release syndrome. This is the second time in the literature that cytokine release syndrome has been described following radiotherapy. First, we synthesize TLS and radiotherapy to determine how radiotherapy could be a trigger associated with other well-known factors. Furthermore, we discuss radiotherapy and cytokine release syndrome. Summary We present the case of a woman treated with analgesic radiotherapy for a multiple myeloma bone lesion. Following the first and the second treatment fraction, the patient presented with an acute respiratory syndrome with fever and biological tests revealed a tumor lysis syndrome. We concluded that the clinical symptoms could be defined as cytokine release syndrome. Furthermore, we discuss how radiotherapy could be a trigger of cytokine release syndrome and tumor lysis syndrome in association with chemotherapy drugs.
Collapse
Affiliation(s)
- Axel Cailleteau
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, Nantes, St-Herblain, France
| | - Cyrille Touzeau
- Department of Hematology, Centre Hospitalier Universitaire, Nantes, France.,CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Site de Recherche Intégrée sur le Cancer (SIRIC), ILIAD, Nantes, France
| | - Bastien Jamet
- Nuclear Medicine Department, University Hospital of Nantes, Nantes, France
| | - Valentine Guimas
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, Nantes, St-Herblain, France
| | - Emmanuel Jouglar
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, Nantes, St-Herblain, France
| | - Stéphane Supiot
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, Nantes, St-Herblain, France.,Centre de Recherche en Cancérologie Nantes-Angers (CRCNA), UMR 1232 Inserm - 6299 CNRS, Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
| |
Collapse
|