1
|
Aydin AA, Yuceer RO, Yildirim S, Unlu A, Kayikcioglu E, Kocer M. The Prognostic Significance of CD47, CD68, and CD163 Expression Levels and Their Relationship with MLR and MAR in Locally Advanced and Oligometastatic Nasopharyngeal Carcinoma. Diagnostics (Basel) 2024; 14:2648. [PMID: 39682556 DOI: 10.3390/diagnostics14232648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND This study aimed to assess the prognostic and predictive implications of CD47, CD68, and CD163, biomarkers of tumor-associated macrophages (TAMs), on the treatment efficacy and clinical outcomes of nasopharyngeal carcinoma (NPC). Additionally, the prognostic value of TAM-related indices, such as the monocyte-to-lymphocyte ratio (MLR) and monocyte-to-albumin ratio (MAR), was evaluated. METHODS A retrospective cohort of 54 patients with locally advanced or oligometastatic NPC treated with concurrent chemoradiotherapy (CCRT), with or without induction chemotherapy, was analyzed. Patients were categorized based on the cumulative expression scores for CD47, CD68, and CD163: negative/low (0-3 points) and high (4-6 points). MLR and MAR were also stratified as low MLR (<0.545) vs. high MLR (≥0.545) and low MAR (<16.145) vs. high MAR (≥16.145). The primary endpoint was overall survival (OS). RESULTS High CD47, CD68, and CD163 expression levels were correlated with advanced clinical stage, reduced CCRT response, and elevated MLR and MAR. These TAM biomarkers were linearly correlated with each other and with established risk factors such as advanced age and elevated EBV-DNA levels. Kaplan-Meier analysis revealed that patients with low TAM expression had significantly longer OS and progression-free survival (PFS) than those with high TAM expression. Multivariate analysis identified high CD163, MLR, and MAR levels as independent adverse prognostic factors for OS. Elevated MLR is an independent risk factor for both OS and PFS in patients with NPC. CONCLUSIONS CD47, CD68, and CD163 are significant prognostic markers in NPC, with higher levels being associated with poorer OS and PFS. Elevated MLR and MAR values also predict worse outcomes, underscoring their value as prognostic tools. CD163 and MLR are particularly strong predictors, highlighting the crucial role of TAMs in NPC management and suggesting that CD163 is a potential therapeutic target within the immune checkpoint pathway.
Collapse
Affiliation(s)
- Asim Armagan Aydin
- Department of Clinical Oncology, Health Sciences University Antalya Education and Research Hospital, Antalya 07100, Turkey
| | - Ramazan Oguz Yuceer
- Department of Pathology, Cumhuriyet University School of Medicine, Sivas 58140, Turkey
| | - Senay Yildirim
- Department of Pathology, Health Sciences University Antalya Education and Research Hospital, Antalya 07100, Turkey
| | - Ahmet Unlu
- Department of Clinical Oncology, Health Sciences University Antalya Education and Research Hospital, Antalya 07100, Turkey
| | - Erkan Kayikcioglu
- Department of Clinical Oncology, Istinye University School of Medicine Liv Hospital, Istanbul 34517, Turkey
| | - Murat Kocer
- Department of Clinical Oncology, Health Sciences University Antalya Education and Research Hospital, Antalya 07100, Turkey
| |
Collapse
|
2
|
Gao F, Jiang L, Guo T, Lin J, Xu W, Yuan L, Han Y, Yang J, Pan Q, Chen E, Zhang N, Chen S, Wang X. Deep learning-based pathological prediction of lymph node metastasis for patient with renal cell carcinoma from primary whole slide images. J Transl Med 2024; 22:568. [PMID: 38877591 PMCID: PMC11177484 DOI: 10.1186/s12967-024-05382-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/08/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Metastasis renal cell carcinoma (RCC) patients have extremely high mortality rate. A predictive model for RCC micrometastasis based on pathomics could be beneficial for clinicians to make treatment decisions. METHODS A total of 895 formalin-fixed and paraffin-embedded whole slide images (WSIs) derived from three cohorts, including Shanghai General Hospital (SGH), Clinical Proteomic Tumor Analysis Consortium (CPTAC) and Cancer Genome Atlas (TCGA) cohorts, and another 588 frozen section WSIs from TCGA dataset were involved in the study. The deep learning-based strategy for predicting lymphatic metastasis was developed based on WSIs through clustering-constrained-attention multiple-instance learning method and verified among the three cohorts. The performance of the model was further verified in frozen-pathological sections. In addition, the model was also tested the prognosis prediction of patients with RCC in multi-source patient cohorts. RESULTS The AUC of the lymphatic metastasis prediction performance was 0.836, 0.865 and 0.812 in TCGA, SGH and CPTAC cohorts, respectively. The performance on frozen section WSIs was with the AUC of 0.801. Patients with high deep learning-based prediction of lymph node metastasis values showed worse prognosis. CONCLUSIONS In this study, we developed and verified a deep learning-based strategy for predicting lymphatic metastasis from primary RCC WSIs, which could be applied in frozen-pathological sections and act as a prognostic factor for RCC to distinguished patients with worse survival outcomes.
Collapse
Affiliation(s)
- Feng Gao
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liren Jiang
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tuanjie Guo
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Lin
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Xu
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Yuan
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaqin Han
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiji Yang
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Pan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enhui Chen
- Department of Pathology, Dongtai People's Hospital, Dongtai, Jiangsu, China
| | - Ning Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Siteng Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Zheng W, Zhang P, Yao C, Tao Y, Wang Z, Meng S. The clinical significance of PD-1 expression in patients with bladder cancer without lymph node metastasis: a comparative study with drained lymph nodes and tumor tissues. Int J Neurosci 2024:1-17. [PMID: 38744296 DOI: 10.1080/00207454.2024.2356152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE In light of the increasing importance of immunotherapy in bladder cancer treatment, this study is aim to investigate the expression and clinical significance of programmed cell surface death-1 (PD-1) in bladder cancer patients without lymph node metastasis, and to compare and analyze the difference of PD-1 in draining lymph nodes and tumor tissues. METHODS The expression of PD-1 on T cells and the proportion of positive PD-1 + T cells of IFN-γ and CD105a were detected by flow cytometry, and the correlation between PD-1 expression and clinical parameters was analyzed. RESULTS The percentage of PD-1 positive cells in drainage lymph nodes was higher than that in tumor tissues (P < 0.001). PD-1 positive cells accounted for the highest proportion in CD3 + T cells. The proportion of IFN-γ-positive PD-1 + T cells in draining lymph nodes was significantly higher than that in tumor tissues (P < 0.001), while there was no significant difference in CD105a positive PD-1 + T cells between tumor tissues and draining lymph nodes. Pathological grade, tumor size and stage were positively correlated with PD-1 expression level in the lymph nodes. CONCLUSION The high expression of PD-1 in patients with bladder cancer without lymph node metastasis, especially in draining lymph nodes, suggests that PD-1 may play a key role in the regulation of tumor immune microenvironment. The correlation between PD-1 and clinical parameters indicates its potential prognostic value. These findings provide important clinical implications for PD-1 targeted therapy, but further prospective studies are needed to determine the application value of PD-1 in therapeutic strategies.
Collapse
Affiliation(s)
- Wei Zheng
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Cenchao Yao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yutao Tao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhida Wang
- Postgraduate Training Base Alliance of Zhejiang Provincial People's Hospital, Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Shuai Meng
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University
| |
Collapse
|
4
|
Mao C, Xu N. Single-cell Sequencing Data Reveals Aggressive CD68-type Macrophages and Prognostic Models in Bladder Cancer. Curr Med Chem 2024; 31:1523-1538. [PMID: 37622699 DOI: 10.2174/0929867331666230824093312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/17/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND The highly heterogeneous, complex pathological histology, and clinical phenotype in bladder cancer (BC) plague the prognostic management of BC to the present day. METHODS This study was conducted using single-cell sequencing data from the gene expression omnibus (GEO) database (GSE135337). A descending, annotated analysis was performed to identify the cell types contributing to BC aggressiveness. BC cell sequencing data from The Cancer Genome Atlas (TCGA) database were then combined with univariate, least absolute shrinkage and selection operator (LASSO), multivariate COX regression analysis to identify biomarkers of BC prognosis to construct a BC. We identified biomarkers of BC prognosis to construct a prognostic risk guidance system for BC. The feedback of patients in different risk strata to immunotherapy was analyzed. Finally, the regulation of prognostic genes on cancer cell activity was verified in vitro by Western blot and cell counting kit-8 (CCK8) assays. RESULTS Macrophages specifically expressing CD68 in BC were the cell type with the highest AUCell score, and CD68 was the biomarker of Tumor-associated macrophages (TAMs). CD68 macrophages were potentially the critical cell type in the aggressive BC subtype. Through univariate, LASSO, multivariate COX-based regression analysis. CTSS, GMFG, ANXA5, GSN, SLC2A3, and FTL were authenticated as prognostic biomarkers (p < 0.05) and composed the Risk Score. Patients in the low-risk group showed an excellent survival advantage (p < 0.01) and immunotherapy feedback. Additionally, inhibition of GSN expression decreased EMT activity to inhibit bladder cancer cell viability. CONCLUSION In conclusion, this study provided feedback on the immune cell types associated with aggressiveness in BC. Importantly, a prognostic management system for BC was created based on the genes involved, providing more insight into the aggressive pathological phenotype as well as the prognosis of BC.
Collapse
Affiliation(s)
- Chenyu Mao
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310026, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310026, China
| |
Collapse
|
5
|
Ye G, Tu L, Li Z, Li X, Zheng X, Song Y. SYNPO2 promotes the development of BLCA by upregulating the infiltration of resting mast cells and increasing the resistance to immunotherapy. Oncol Rep 2024; 51:14. [PMID: 38038167 PMCID: PMC10758676 DOI: 10.3892/or.2023.8673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/27/2023] [Indexed: 12/02/2023] Open
Abstract
Synaptopodin 2 (SYNPO2) plays a pivotal role in regulating tumor growth, development and progression in bladder urothelial Carcinoma (BLCA). However, the precise biological functions and mechanisms of SYNPO2 in BLCA remain unclear. Based on TCGA database‑derived BLCA RNA sequencing data, survival analysis and prognosis analysis indicate that elevated SYNPO2 expression was associated with poor survival outcomes. Notably, exogenous SYNPO2 expression significantly promoted tumor invasion and migration by upregulating vimentin expression in BLCA cell lines. Enrichment analysis revealed the involvement of SYNPO2 in humoral immune responses and the PI3K/AKT signaling pathway. Moreover, increased SYNPO2 levels increased the sensitivity of BLCA to PI3K/AKT pathway‑targeted drugs while being resistant to conventional chemotherapy. In in vivo BLCA mouse models, SYNPO2 overexpression increased pulmonary metastasis of 5637 cells. High SYNPO2 expression led to increased infiltration of innate immune cells, particularly mast cells, in both nude mouse model and clinical BLCA samples. Furthermore, tumor immune dysfunction and exclusion score showed that patients with BLCA patients and high SYNPO2 expression exhibited worse clinical outcomes when treated with immune checkpoint inhibitors. Notably, in the IMvigor 210 cohort, SYNPO2 expression was significantly associated with the population of resting mast cells in BLCA tissue following PD1/PDL1 targeted therapy. In conclusion, SYNPO2 may be a promising prognostic factor in BLCA by modulating mast cell infiltration and exacerbating resistance to immune therapy and conventional chemotherapy.
Collapse
Affiliation(s)
- Gongjie Ye
- Department of Critical Care Medicine, Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
| | - Zhuduo Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
| | - Xiangyu Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
| | - Xiaoliang Zheng
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
| | - Yongfei Song
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
- Medical College, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
6
|
Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther 2023; 8:104. [PMID: 36882399 PMCID: PMC9990587 DOI: 10.1038/s41392-023-01365-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer immunotherapy, mainly including immune checkpoints-targeted therapy and the adoptive transfer of engineered immune cells, has revolutionized the oncology landscape as it utilizes patients' own immune systems in combating the cancer cells. Cancer cells escape immune surveillance by hijacking the corresponding inhibitory pathways via overexpressing checkpoint genes. Phagocytosis checkpoints, such as CD47, CD24, MHC-I, PD-L1, STC-1 and GD2, have emerged as essential checkpoints for cancer immunotherapy by functioning as "don't eat me" signals or interacting with "eat me" signals to suppress immune responses. Phagocytosis checkpoints link innate immunity and adaptive immunity in cancer immunotherapy. Genetic ablation of these phagocytosis checkpoints, as well as blockade of their signaling pathways, robustly augments phagocytosis and reduces tumor size. Among all phagocytosis checkpoints, CD47 is the most thoroughly studied and has emerged as a rising star among targets for cancer treatment. CD47-targeting antibodies and inhibitors have been investigated in various preclinical and clinical trials. However, anemia and thrombocytopenia appear to be formidable challenges since CD47 is ubiquitously expressed on erythrocytes. Here, we review the reported phagocytosis checkpoints by discussing their mechanisms and functions in cancer immunotherapy, highlight clinical progress in targeting these checkpoints and discuss challenges and potential solutions to smooth the way for combination immunotherapeutic strategies that involve both innate and adaptive immune responses.
Collapse
|
7
|
Donoso‐Meneses D, Figueroa‐Valdés AI, Georges N, Tobar HE, Alcayaga‐Miranda F. Turning adversity into opportunity: Small extracellular vesicles as nanocarriers for tumor-associated macrophages re-education. Bioeng Transl Med 2023; 8:e10349. [PMID: 36684102 PMCID: PMC9842057 DOI: 10.1002/btm2.10349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 01/25/2023] Open
Abstract
Currently, small extracellular vesicles (sEV) as a nanoscale drug delivery system, are undergoing biotechnological scaling and clinical validation. Nonetheless, preclinical pharmacokinetic studies revealed that sEV are predominantly uptaken by macrophages. Although this "sEV-macrophage" propensity represents a disadvantage in terms of sEV targeting and their bioavailability as nanocarriers, it also represents a strategic advantage for those therapies that involve macrophages. Such is the case of tumor-associated macrophages (TAMs), which can reprogram/repolarize their predominantly immunosuppressive and tumor-supportive phenotype toward an immunostimulatory and anti-tumor phenotype using sEV as nanocarriers of TAMs reprogramming molecules. In this design, sEV represents an advantageous delivery system, providing precision to the therapy by simultaneously matching their tropism to the therapeutic cell target. Here, we review the current knowledge of the role of TAMs in the tumoral microenvironment and the effect generated by the reprogramming of these phagocytic cells fate using sEV. Finally, we discuss how these vesicles can be engineered by different bioengineering techniques to improve their therapeutic cargo loading and preferential uptake by TAMs.
Collapse
Affiliation(s)
- Dario Donoso‐Meneses
- Laboratory of Nano‐Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of MedicineUniversidad de Los AndesSantiagoChile
- Consorcio RegeneroChilean Consortium for Regenerative MedicineSantiagoChile
- IMPACTCenter of Interventional Medicine for Precision and Advanced Cellular TherapySantiagoChile
| | - Aliosha I. Figueroa‐Valdés
- Laboratory of Nano‐Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of MedicineUniversidad de Los AndesSantiagoChile
- Consorcio RegeneroChilean Consortium for Regenerative MedicineSantiagoChile
- IMPACTCenter of Interventional Medicine for Precision and Advanced Cellular TherapySantiagoChile
| | - Nicolás Georges
- Laboratory of Nano‐Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of MedicineUniversidad de Los AndesSantiagoChile
- Consorcio RegeneroChilean Consortium for Regenerative MedicineSantiagoChile
- IMPACTCenter of Interventional Medicine for Precision and Advanced Cellular TherapySantiagoChile
| | - Hugo E. Tobar
- Laboratory of Nano‐Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of MedicineUniversidad de Los AndesSantiagoChile
- IMPACTCenter of Interventional Medicine for Precision and Advanced Cellular TherapySantiagoChile
| | - Francisca Alcayaga‐Miranda
- Laboratory of Nano‐Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of MedicineUniversidad de Los AndesSantiagoChile
- Consorcio RegeneroChilean Consortium for Regenerative MedicineSantiagoChile
- IMPACTCenter of Interventional Medicine for Precision and Advanced Cellular TherapySantiagoChile
- School of Medicine, Faculty of MedicineUniversidad de Los AndesSantiagoChile
- Cells for CellsSantiagoChile
| |
Collapse
|
8
|
Wang Y, Shao W, Feng Y, Tang J, Wang Q, Zhang D, Huang H, Jiang M. Prognostic value and potential biological functions of ferroptosis‑related gene signature in bladder cancer. Oncol Lett 2022; 24:301. [PMID: 35949618 PMCID: PMC9353228 DOI: 10.3892/ol.2022.13421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022] Open
Abstract
Bladder cancer (BC), as a genitourinary system tumor, is a highly prevalent tumor type. Ferroptosis is an iron-dependent oxidative cell death mechanism that is becoming increasingly recognized as a promising avenue for cancer therapy. However, further determination of the prospective prognostic value of ferroptosis for BC and investigation of the underlying mechanisms is required. The mRNA expression profiles and associated clinical data were downloaded from public databases such as The Cancer Genome Atlas, Gene Expression Omnibus and the IMvigor210 database. To construct a predictive formula, the least absolute shrinkage and selection operator Cox regression algorithm was used. In addition, a prognostic multigene signature was constructed using previously selected ferroptosis-related genes (FRGs). A total of 28 FRGs were differentially expressed between tumor and normal samples with |log2 fold change| >1 and adjusted P<0.05. A prognostic model was then established and it was validated in the GEO cohort using six genes: Glutamate-cysteine ligase modifier subunit, crystallin α-B, transferrin receptor, zinc finger E-box binding homeobox 1, squalene epoxidase and glucose-6-phosphate dehydrogenase (G6PD). Numerous important pathways involved in the development of the immune system and cancer were indicated to be significantly different between the two risk groups. In addition, it was discovered that G6PD expression subgroups that were associated with immunotherapy response in patients with BC had similar prognostic features to risk score subgroups. In the present study, a gene signature with a prognostic value for ferroptosis in BC was successfully developed and the potential value of G6PD was identified for future research.
Collapse
Affiliation(s)
- Yutong Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenchuan Shao
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yeqi Feng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Junzhe Tang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qinchun Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dong Zhang
- State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Huaxing Huang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Minjun Jiang
- Department of Urology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, Jiangsu 215299, P.R. China
| |
Collapse
|
9
|
Jiang L, Chen S, Pan Q, Zheng J, He J, Sun J, Han Y, Yang J, Zhang N, Fu G, Gao F. The feasibility of proteomics sequencing based immune-related prognostic signature for predicting clinical outcomes of bladder cancer patients. BMC Cancer 2022; 22:676. [PMID: 35725413 PMCID: PMC9210750 DOI: 10.1186/s12885-022-09783-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background Bladder cancer (BCa) shows its potential immunogenity in current immune-checkpoint inhibitor related immunotherapies. However, its therapeutic effects are improvable and could be affected by tumor immune microenvironment. Hence it is interesting to find some more prognostic indicators for BCa patients concerning immunotherapies. Methods In the present study, we retrospect 129 muscle-invasive BCa (MIBC) patients with radical cystectomy in Shanghai General Hospital during 2007 to 2018. Based on the results of proteomics sequencing from 9 pairs of MIBC tissue from Shanghai General Hospital, we focused on 13 immune-related differential expression proteins and their related genes. An immune-related prognostic signature (IRPS) was constructed according to Cancer Genome Atlas (TCGA) dataset. The IRPS was verified in ArrayExpress (E-MTAB-4321) cohort and Shanghai General Hospital (General) cohort, separately. A total of 1010 BCa patients were involved in the study, including 405 BCa patients in TCGA cohort, 476 BCa patients in E-MTAB-4321 cohort and 129 MIBC patients in General cohort. Result It can be indicated that high IRPS score was related to poor 5-year overall survival and disease-free survival. The IRPS score was also evaluated its immune infiltration. We found that the IRPS score was adversely associated with GZMB, IFN-γ, PD-1, PD-L1. Additionally, higher IRPS score was significantly associated with more M2 macrophage and resting mast cell infiltration. Conclusion The study revealed a novel BCa prognostic signature based on IRPS score, which may be useful for BCa immunotherapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09783-y.
Collapse
Affiliation(s)
- Liren Jiang
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Hai Ning Road, Shanghai, 200080, China
| | - Siteng Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Pan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zheng
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Hai Ning Road, Shanghai, 200080, China
| | - Jin He
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Hai Ning Road, Shanghai, 200080, China
| | - Juanjuan Sun
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Hai Ning Road, Shanghai, 200080, China
| | - Yaqin Han
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Hai Ning Road, Shanghai, 200080, China
| | - Jiji Yang
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Hai Ning Road, Shanghai, 200080, China
| | - Ning Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Road, Shanghai, 200020, China.
| | - Guohui Fu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 280, South Chong-Qing Road, Shanghai, 200025, China.
| | - Feng Gao
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Hai Ning Road, Shanghai, 200080, China.
| |
Collapse
|
10
|
Chae HK, Nam W, Kim HG, Lim S, Noh BJ, Kim SW, Kang GH, Park JY, Eom DW, Kim SJ. Identification of New Prognostic Markers and Therapeutic Targets for Non-Muscle Invasive Bladder Cancer: HER2 as a Potential Target Antigen. Front Immunol 2022; 13:903297. [PMID: 35677058 PMCID: PMC9167936 DOI: 10.3389/fimmu.2022.903297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022] Open
Abstract
Bacillus Calmette–Guérin (BCG) is the gold standard adjuvant treatment for non-muscle-invasive bladder cancer (NMIBC). However, given the current global shortage of BCG, new treatments are needed. We evaluated tumor microenvironment markers as potential BCG alternatives for NMIBC treatment. Programmed death-ligand 1, human epidermal growth factor receptor-2 (HER2), programmed cell death-1 (PD1), CD8, and Ki67 levels were measured in treatment-naïve NMIBC and MIBC patients (pTa, pT1, and pT2 stages). Univariate and multivariate Cox proportional hazard models were used to determine the impact of these markers and other clinicopathological factors on survival, recurrence, and progression. EP263, IM142, PD1, and Ki67 levels were the highest in the T2 stage, followed by the T1 and Ta stages. HER2 and IM263 expressions were higher in the T1 and T2 stages than in the Ta stage. In NMIBC, the significant prognostic factors for recurrence-free survival were adjuvant therapy, tumor grade, and HER2 positivity, whereas those for progression-free survival included age, T-stage, and IM263. Age, T-stage, EP263, PD1, CD8, and Ki67 levels were significant factors associated with overall survival. IM263 and HER2 are potential biomarkers for progression and recurrence, respectively. Therefore, we propose HER2 as a potential target antigen for intravesical therapeutics as a BCG alternative.
Collapse
Affiliation(s)
- Han Kyu Chae
- Department of Urology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
| | - Wook Nam
- Department of Urology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
| | - Han Gwun Kim
- Department of Urology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
| | - Sharon Lim
- Department of Pathology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
| | - Byeong-Joo Noh
- Department of Pathology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
| | - So Won Kim
- Department of Parmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Gil Hyun Kang
- Department of Pathology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
| | - Jong Yeon Park
- Department of Urology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
| | - Dae-Woon Eom
- Department of Pathology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
- *Correspondence: Sung Jin Kim, ; Dae-Woon Eom,
| | - Sung Jin Kim
- Department of Urology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
- *Correspondence: Sung Jin Kim, ; Dae-Woon Eom,
| |
Collapse
|
11
|
von der Grün J, Winkelmann R, Burck I, Martin D, Rödel F, Wild PJ, Bankov K, Weigert A, Kur IM, Brandts C, Filmann N, Issing C, Thönissen P, Tanneberger AM, Rödel C, Ghanaati S, Balermpas P. Neoadjuvant Chemoradiotherapy for Oral Cavity Cancer: Predictive Factors for Response and Interim Analysis of the Prospective INVERT-Trial. Front Oncol 2022; 12:817692. [PMID: 35402268 PMCID: PMC8988145 DOI: 10.3389/fonc.2022.817692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/02/2022] [Indexed: 01/10/2023] Open
Abstract
Background To study neoadjuvant chemoradiotherapy (nCRT) and potential predictive factors for response in locally advanced oral cavity cancer (LA-OCC). Methods The INVERT trial is an ongoing single-center, prospective phase 2, proof-of-principle trial. Operable patients with stage III-IVA squamous cell carcinomas of the oral cavity were eligible and received nCRT consisting of 60 Gy with concomitant cisplatin and 5-fluorouracil. Surgery was scheduled 6-8 weeks after completion of nCRT. Explorative, multiplex immunohistochemistry (IHC) was performed on pretreatment tumor specimen, and diffusion-weighted magnetic resonance imaging (DW-MRI) was conducted prior to, during nCRT (day 15), and before surgery to identify potential predictive biomarkers and imaging features. Primary endpoint was the pathological complete response (pCR) rate. Results Seventeen patients with stage IVA OCC were included in this interim analysis. All patients completed nCRT. One patient died from pneumonia 10 weeks after nCRT before surgery. Complete tumor resection (R0) was achieved in 16/17 patients, of whom 7 (41%, 95% CI: 18-67%) showed pCR. According to the Clavien-Dindo classification, grade 3a and 3b complications were found in 4 (25%) and 5 (31%) patients, respectively; grade 4-5 complications did not occur. Increased changes in the apparent diffusion coefficient signal intensities between MRI at day 15 of nCRT and before surgery were associated with better response (p=0.022). Higher abundances of programmed cell death protein 1 (PD1) positive cytotoxic T-cells (p=0.012), PD1+ macrophages (p=0.046), and cancer-associated fibroblasts (CAFs, p=0.036) were associated with incomplete response to nCRT. Conclusion nCRT for LA-OCC followed by radical surgery is feasible and shows high response rates. Larger patient cohorts from randomized trials are needed to further investigate nCRT and predictive biomarkers such as changes in DW-MRI signal intensities, tumor infiltrating immune cells, and CAFs.
Collapse
Affiliation(s)
- Jens von der Grün
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt a. M., Goethe-University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe-University Frankfurt, Frankfurt, Germany
| | - Ria Winkelmann
- Dr. Senckenberg Institute of Pathology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Iris Burck
- Department of Diagnostic and Interventional Radiology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Daniel Martin
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt a. M., Goethe-University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe-University Frankfurt, Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt a. M., Goethe-University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe-University Frankfurt, Frankfurt, Germany
| | - Peter Johannes Wild
- Dr. Senckenberg Institute of Pathology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Katrin Bankov
- Dr. Senckenberg Institute of Pathology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ivan-Maximiliano Kur
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Christian Brandts
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt a. M., Goethe-University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe-University Frankfurt, Frankfurt, Germany
- Department of Medicine, Hematology/Oncology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Natalie Filmann
- Institute of Biostatistics and Mathematical Modelling, Goethe-University Frankfurt, Frankfurt, Germany
| | - Christian Issing
- Frankfurt Cancer Institute (FCI), Goethe-University Frankfurt, Frankfurt, Germany
- Department of Otorhinolaryngology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Philipp Thönissen
- Department of Oral, Maxillofacial and Facial Plastic Surgery, Goethe-University Frankfurt, Frankfurt, Germany
| | - Anna Maria Tanneberger
- Department of Oral, Maxillofacial and Facial Plastic Surgery, Goethe-University Frankfurt, Frankfurt, Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt a. M., Goethe-University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe-University Frankfurt, Frankfurt, Germany
| | - Shahram Ghanaati
- Department of Oral, Maxillofacial and Facial Plastic Surgery, Goethe-University Frankfurt, Frankfurt, Germany
| | - Panagiotis Balermpas
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Qiu X, Zhao T, Luo R, Qiu R, Li Z. Tumor-Associated Macrophages: Key Players in Triple-Negative Breast Cancer. Front Oncol 2022; 12:772615. [PMID: 35237507 PMCID: PMC8882594 DOI: 10.3389/fonc.2022.772615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Triple negative breast cancer (TNBC) refers to the subtype of breast cancer which is negative for ER, PR, and HER-2 receptors. Tumor-associated macrophages (TAMs) refer to the leukocyte infiltrating tumor, derived from circulating blood mononuclear cells and differentiating into macrophages after exuding tissues. TAMs are divided into typical activated M1 subtype and alternately activated M2 subtype, which have different expressions of receptors, cytokines and chemokines. M1 is characterized by expressing a large amount of inducible nitric oxide synthase and TNF-α, and exert anti-tumor activity by promoting pro-inflammatory and immune responses. M2 usually expresses Arginase 1 and high levels of cytokines, growth factors and proteases to support their carcinogenic function. Recent studies demonstrate that TAMs participate in the process of TNBC from occurrence to metastasis, and might serve as potential biomarkers for prognosis prediction.
Collapse
Affiliation(s)
- Xia Qiu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianjiao Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Cell Biology, Wuhan Institute of Bioengineering, Wuhan, China
| | - Ran Luo
- Department of Cell Biology, Wuhan Institute of Bioengineering, Wuhan, China
| | - Ran Qiu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhaoming Li, ; Ran Qiu,
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhaoming Li, ; Ran Qiu,
| |
Collapse
|
13
|
Leblond MM, Zdimerova H, Desponds E, Verdeil G. Tumor-Associated Macrophages in Bladder Cancer: Biological Role, Impact on Therapeutic Response and Perspectives for Immunotherapy. Cancers (Basel) 2021; 13:cancers13184712. [PMID: 34572939 PMCID: PMC8467100 DOI: 10.3390/cancers13184712] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are one of the most abundant infiltrating immune cells of solid tumors. Despite their possible dual role, i.e., pro- or anti-tumoral, there is considerable evidence showing that the accumulation of TAMs promotes tumor progression rather than slowing it. Several strategies are being developed and clinically tested to target these cells. Bladder cancer (BCa) is one of the most common cancers, and despite heavy treatments, including immune checkpoint inhibitors (ICIs), the overall patient survival for advanced BCa is still poor. TAMs are present in bladder tumors and play a significant role in BCa development. However, few investigations have analyzed the effect of targeting TAMs in BCa. In this review, we focus on the importance of TAMs in a cancerous bladder, their association with patient outcome and treatment efficiency as well as on how current BCa treatments impact these cells. We also report different strategies used in other cancer types to develop new immunotherapeutic strategies with the aim of improving BCa management through TAMs targeting.
Collapse
Affiliation(s)
- Marine M. Leblond
- UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Normandie University, 14000 Caen, France;
| | - Hana Zdimerova
- Department of Oncology UNIL CHUV, University of Lausanne, 1015 Lausanne, Switzerland; (H.Z.); (E.D.)
| | - Emma Desponds
- Department of Oncology UNIL CHUV, University of Lausanne, 1015 Lausanne, Switzerland; (H.Z.); (E.D.)
| | - Grégory Verdeil
- Department of Oncology UNIL CHUV, University of Lausanne, 1015 Lausanne, Switzerland; (H.Z.); (E.D.)
- Correspondence:
| |
Collapse
|
14
|
Luan JC, Zeng TY, Zhang QJ, Xia DR, Cong R, Yao LY, Song LB, Zhou X, Zhou X, Chen X, Xia JD, Song NH. A novel signature constructed by ferroptosis-associated genes (FAGs) for the prediction of prognosis in bladder urothelial carcinoma (BLCA) and associated with immune infiltration. Cancer Cell Int 2021; 21:414. [PMID: 34362387 PMCID: PMC8349026 DOI: 10.1186/s12935-021-02096-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background Ferroptosis, a novel form of regulated cell death, has been implicated in the pathogenesis of cancers. Nevertheless, the potential function and prognostic values of ferroptosis in bladder urothelial carcinoma (BLCA) are complex and remain to be clarified. Therefore, we proposed to systematically examine the roles of ferroptosis-associated genes (FAGs) in BLCA. Methods According to The Cancer Genome Atlas (TCGA) database, differently expressed FAGs (DEFAGs) and differently expressed transcription factors (DETFs) were identified in BLCA. Next, the network between DEFAGs and DETFs, GO annotations and KEGG pathway analyses were performed. Then, through univariate, LASSO and multivariate regression analyses, a novel signature based on FAGs was constructed. Moreover, survival analysis, PCA analysis, t-SNE analysis, ROC analysis, independent prognostic analysis, clinicopathological and immune correlation analysis, and experimental validation were utilized to evaluate the signature. Results Twenty-eight DEFAGs were identified, and four FAGs (CRYAB, TFRC, SQLE and G6PD) were finally utilized to establish the FAGs based signature in the TCGA cohort, which was subsequently validated in the GEO database. Moreover, we found that immune cell infiltration, immunotherapy-related biomarkers and immune-related pathways were significantly different between two risk groups. Besides, nine molecule drugs with the potential to treat bladder cancer were identified by the connectivity map database analysis. Finally, the expression levels of crucial FAGs were verified by the experiment, which were consistent with our bioinformatics analysis, and knockdown of TFRC could inhibit cell proliferation and colony formation in BLCA cell lines in vitro. Conclusions Our study identified prognostic ferroptosis-associated genes and established a novel FAGs signature, which could accurately predict prognosis in BLCA patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02096-3.
Collapse
Affiliation(s)
- Jiao-Chen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Teng-Yue Zeng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Qi-Jie Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - De-Run Xia
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Rong Cong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Liang-Yu Yao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Le-Bin Song
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Xuan Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Xiang Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jia-Dong Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China.
| | - Ning-Hong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China. .,The Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, Xinjiang, China.
| |
Collapse
|