1
|
Sun J, Guo H, Zhang S, Nie Y, Zhou S, Zeng Y, Sun Y. Machine learning-based integration develops an immunogenic cell death-derived lncRNA signature for predicting prognosis and immunotherapy response in lung adenocarcinoma. Sci Rep 2024; 14:11724. [PMID: 38778157 PMCID: PMC11111459 DOI: 10.1038/s41598-024-62569-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/19/2024] [Indexed: 05/25/2024] Open
Abstract
Accumulating evidence demonstrates that lncRNAs are involved in the regulation of the immune microenvironment and early tumor development. Immunogenic cell death occurs mainly through the release or increase of tumor-associated antigen and tumor-specific antigen, exposing "danger signals" to stimulate the body's immune response. Given the recent development of immunotherapy in lung adenocarcinoma, we explored the role of tumor immunogenic cell death-related lncRNAs in lung adenocarcinoma for prognosis and immunotherapy benefit, which has never been uncovered yet. Based on the lung adenocarcinoma cohorts from the TCGA database and GEO database, the study developed the immunogenic cell death index signature by several machine learning algorithms and then validated the signature for prognosis and immunotherapy benefit of lung adenocarcinoma patients, which had a more stable performance compared with published signatures in predicting the prognosis, and demonstrated predictive value for benefiting from immunotherapy in multiple cohorts of multiple cancers, and also guided the utilization of chemotherapy drugs.
Collapse
Affiliation(s)
- Jiazheng Sun
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hehua Guo
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Respiratory Medicine, The First People's Hospital of Jiangxia District, Wuhan, China
| | - Siyu Zhang
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Nie
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sirui Zhou
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yulan Zeng
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yalu Sun
- Department of Rehabilitation Medicine, Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
2
|
Ponomarenko I, Pasenov K, Churnosova M, Sorokina I, Aristova I, Churnosov V, Ponomarenko M, Reshetnikova Y, Reshetnikov E, Churnosov M. Obesity-Dependent Association of the rs10454142 PPP1R21 with Breast Cancer. Biomedicines 2024; 12:818. [PMID: 38672173 PMCID: PMC11048332 DOI: 10.3390/biomedicines12040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The purpose of this work was to find a link between the breast cancer (BC)-risk effects of sex hormone-binding globulin (SHBG)-associated polymorphisms and obesity. The study was conducted on a sample of 1498 women (358 BC; 1140 controls) who, depending on the presence/absence of obesity, were divided into two groups: obese (119 BC; 253 controls) and non-obese (239 BC; 887 controls). Genotyping of nine SHBG-associated single nucleotide polymorphisms (SNP)-rs17496332 PRMT6, rs780093 GCKR, rs10454142 PPP1R21, rs3779195 BAIAP2L1, rs440837 ZBTB10, rs7910927 JMJD1C, rs4149056 SLCO1B1, rs8023580 NR2F2, and rs12150660 SHBG-was executed, and the BC-risk impact of these loci was analyzed by logistic regression separately in each group of obese/non-obese women. We found that the BC-risk effect correlated by GWAS with the SHBG-level polymorphism rs10454142 PPP1R21 depends on the presence/absence of obesity. The SHBG-lowering allele C rs10454142 PPP1R21 has a risk value for BC in obese women (allelic model: CvsT, OR = 1.52, 95%CI = 1.10-2.11, and pperm = 0.013; additive model: CCvsTCvsTT, OR = 1.71, 95%CI = 1.15-2.62, and pperm = 0.011; dominant model: CC + TCvsTT, OR = 1.95, 95%CI = 1.13-3.37, and pperm = 0.017) and is not associated with the disease in women without obesity. SNP rs10454142 PPP1R21 and 10 proxy SNPs have adipose-specific regulatory effects (epigenetic modifications of promoters/enhancers, DNA interaction with 51 transcription factors, eQTL/sQTL effects on five genes (PPP1R21, RP11-460M2.1, GTF2A1L, STON1-GTF2A1L, and STON1), etc.), can be "likely cancer driver" SNPs, and are involved in cancer-significant pathways. In conclusion, our study detected an obesity-dependent association of the rs10454142 PPP1R21 with BC in women.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (I.P.); (K.P.); (M.C.); (I.S.); (I.A.); (V.C.); (M.P.); (Y.R.); (E.R.)
| |
Collapse
|
3
|
Han X, Chen L, Sun P, Wang X, Zhao Q, Liao L, Lou D, Zhou N, Wang Y. A novel lncRNA-hidden polypeptide regulates malignant phenotypes and pemetrexed sensitivity in A549 pulmonary adenocarcinoma cells. Amino Acids 2024; 56:15. [PMID: 38351332 PMCID: PMC10864564 DOI: 10.1007/s00726-023-03361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
The advance of high-throughput sequencing enhances the discovery of short ORFs embedded in long non-coding RNAs (lncRNAs). Here, we uncovered the production and biological activity of lncRNA-hidden polypeptides in lung adenocarcinoma (LUAD). In the present study, bioinformatics was used to screen the lncRNA-hidden polypeptides in LUAD. Analysis of protein expression was done by western blot or immunofluorescence assay. The functions of the polypeptide were determined by detecting its effects on cell viability, proliferation, migration, invasion, and pemetrexed (PEM) sensitivity. The protein interactors of the polypeptide were analyzed by mass spectrometry after Co-immunoprecipitation (Co-IP) assay. The results showed that the lncRNA LINC00954 was confirmed to encode a novel polypeptide LINC00954-ORF. The polypeptide had tumor-suppressor features in A549 cells by repressing cell growth, motility and invasion. Moreover, the polypeptide enhanced PEM sensitivity and suppressed growth in A549/PEM cells. The protein interactors of this polypeptide had close correlations with RNA processing, amide metabolic process, translation, RNA binding, RNA transport, and DNA replication. As a conclusion, the LINC00954-ORF polypeptide embedded in lncRNA LINC00954 possesses tumor-suppressor features in A549 and PEM-resistant A549 cells and sensitizes PEM-resistant A549 cells to PEM, providing evidence that the LINC00954-ORF polypeptide is a potential anti-cancer agent in LUAD.
Collapse
Affiliation(s)
- Xiaobing Han
- Department of Oncology, Xinyang Central Hospital, No. 1 Siyi Road, Shihe District, Xinyang, 464000, Henan, China.
| | - Liangxin Chen
- Department of Oncology, Xinyang Central Hospital, No. 1 Siyi Road, Shihe District, Xinyang, 464000, Henan, China
| | - Peng Sun
- Department of Oncology, Xinyang Central Hospital, No. 1 Siyi Road, Shihe District, Xinyang, 464000, Henan, China
| | - Xiuqing Wang
- Department of Oncology, Xinyang Central Hospital, No. 1 Siyi Road, Shihe District, Xinyang, 464000, Henan, China
| | - Qian Zhao
- Department of Oncology, Xinyang Central Hospital, No. 1 Siyi Road, Shihe District, Xinyang, 464000, Henan, China
| | - Lingfeng Liao
- Department of Oncology, Xinyang Central Hospital, No. 1 Siyi Road, Shihe District, Xinyang, 464000, Henan, China
| | - Dejin Lou
- Department of Oncology, Xinyang Central Hospital, No. 1 Siyi Road, Shihe District, Xinyang, 464000, Henan, China
| | - Nan Zhou
- Department of Oncology, Xinyang Central Hospital, No. 1 Siyi Road, Shihe District, Xinyang, 464000, Henan, China
| | - Yujun Wang
- Department of Gastroenterology, Xinyang Central Hospital, No. 1 Siyi Road, Shihe District, Xinyang, 464000, Henan, China.
| |
Collapse
|
4
|
Zhao C, Xu H, Liu C. Identification of Novel Prognostic Long Non-coding RNAs in Lung Adenocarcinoma Using WGCNA Analysis. Biochem Genet 2024; 62:264-280. [PMID: 37326895 DOI: 10.1007/s10528-023-10424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Long non-coding RNAs play crucial role in the tumorigenesis of lung adenocarcinoma (LUAD). However, the function of a large number of lncRNAs in LUAD has not been investigated yet. Weighted gene correlation network analysis (WGCNA) was applied to construct the co-expression module in the TCGA-LUAD cohort. Protein-protein interaction (PPI) network was used to explore the relationship of genes in the key module. The function of the key module on the prognosis in LUAD was analyzed using GO and KEGG analysis. Finally, we constructed the mRNA-lncRNA co-expression network in the key module to identify the hub lncRNAs that play crucial role in the prognosis in LUAD. The most highly expressed 2500 mRNAs and 2500 lncRNAs in the TCGA-LUAD cohort were clustered into 21 modules. After analyzing the correlation between the module and prognostic clinical traits, the Tan module, consisting of 130 genes, was selected as the key module on the prognosis in LUAD. And then, we found that genes in the key module were majorly enriched in ten multiple signaling pathways. Subsequently, we constructed the mRNA-lncRNA co-expression network based on the genes in the key module. Finally, we identified three lncRNAs and nineteen mRNAs that could be the promising prognostic biomarkers for LUAD. We identified three lncRNAs (MIR99AHG, ADAMTS9-AS2, and AC037459.2) and nineteen mRNAs as potential prognostic biomarkers in LUAD, which provided new insight for prognosis monitoring and therapy development in LUAD.
Collapse
Affiliation(s)
- Can Zhao
- Department of Thoracic Surgery, Liaoning Health Industry Group Fukuang General Hospital, Liaoning, 113001, China
| | - Han Xu
- Department of Thoracic Surgery, Liaoning Health Industry Group Fukuang General Hospital, Liaoning, 113001, China
| | - Chang Liu
- Department of Thoracic Surgery, Liaoning Health Industry Group Fukuang General Hospital, Liaoning, 113001, China.
| |
Collapse
|
5
|
Rong H, Peng J, Ma K, Zhu J, He JT. Ttc39c is a potential target for the treatment of lung cancer. BMC Pulm Med 2022; 22:391. [PMID: 36303158 PMCID: PMC9615393 DOI: 10.1186/s12890-022-02173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The novel TTC gene, tetratricopeptide repeat domain 39 C (Ttc39c), mainly mediates the interaction between proteins. It is involved in the progression of various tumors. In this study, we determined the effect of Ttc39c on lung adenocarcinoma and found that it might be used as a potential intervention target. METHODS We performed a difference analysis of Ttc39c samples from the TCGA database. Transwell experiments were conducted to determine the ability of cell metastasis. Celigo and MTT assays were performed to determine the effect of Ttc39c gene subtraction on cell proliferation. FACS was performed to determine the effect of Ttc39c gene subtraction on apoptosis. Clone-formation experiments were conducted to determine the effect of Ttc39c gene subtraction on cloning ability. Transcriptomics, proteomics, and metabolomics were used to elucidate the enrichment pathway of the Ttc39c gene in the progression of lung adenocarcinoma. RESULTS The expression of Ttc39c increased significantly in lung adenocarcinoma. The proliferation, metastasis, and cloning ability of human lung cancer cells were inhibited, while the apoptosis of cells increased significantly after the depletion of Ttc39c. Our results based on the transcriptomics, proteomics, and metabolomics analyses indicated that Ttc39c might be involved in the progression of lung adenocarcinoma (LUAD) mainly through the metabolic pathway and the p53 pathway. CONCLUSION To summarize, Ttc39c strongly regulates the proliferation and metastasis of lung adenocarcinoma cells. The main pathways involved in Ttc39c in lung adenocarcinoma include the energy metabolism and p53 pathways.
Collapse
Affiliation(s)
- Hao Rong
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, No. 55, 4th section, South Renmin Road, 610054, Chengdu, Sichuan, China
- Sichuan Cancer Center, School of Medicine, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China
- University of Electronic Science and Technology of China, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China
| | - Jun Peng
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, No. 55, 4th section, South Renmin Road, 610054, Chengdu, Sichuan, China
- Sichuan Cancer Center, School of Medicine, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China
- University of Electronic Science and Technology of China, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China
| | - Ke Ma
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, No. 55, 4th section, South Renmin Road, 610054, Chengdu, Sichuan, China
- Sichuan Cancer Center, School of Medicine, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China
- University of Electronic Science and Technology of China, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China
| | - Jiang Zhu
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, No. 55, 4th section, South Renmin Road, 610054, Chengdu, Sichuan, China
- Sichuan Cancer Center, School of Medicine, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China
- University of Electronic Science and Technology of China, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China
| | - Jin-Tao He
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, No. 55, 4th section, South Renmin Road, 610054, Chengdu, Sichuan, China.
- Sichuan Cancer Center, School of Medicine, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China.
- University of Electronic Science and Technology of China, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China.
| |
Collapse
|
6
|
Chromobox Homologue 7 Acts as a Tumor Suppressor in Both Lung Adenocarcinoma and Lung Squamous Cell Carcinoma via Inhibiting ERK/MAPK Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4952185. [PMID: 35646140 PMCID: PMC9135519 DOI: 10.1155/2022/4952185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
Abstract
Chromobox homologue 7 (CBX7) is a member of the polycomb group family that plays a pivotal role in regulating cellular processes in human cancers. This study aims to explore the function and underlying molecular mechanisms of CBX7 in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). The expression of CBX7 in LUAD and LUSC tissues was analyzed by UALCAN and GEPIA based on the TCGA database. Cell viability and apoptosis were measured by CCK-8 and flow cytometry assays, respectively. Cell migration and invasion were detected by transwell assay. The functions of downregulated genes in LUAD were enriched via GO and KEGG pathway analyses. The mRNA expression of CBX7, ERK1/2, and p38 was determined by qRT-PCR, and the protein levels of CBX7, ERK1/2, p-ERK1/2, p38, and p-p38 were measured by Western blotting. Tumor xenograft model was established to validate the antitumor effect of CBX7. The expression of CBX7 and Ki-67 in tumor tissues was detected by immunohistochemistry. CBX7 was downregulated in the tissues and cells of both LUAD and LUSC. Low CBX7 expression was associated with a poor overall survival rate in LUAD patients. CBX7 overexpression inhibited the viability, migration, and invasion and promoted the apoptosis of LUAD and LUSC cells. In addition, the downregulated genes in LUAD were enriched in MAPK cascade (GO) and MAPK signaling pathway (KEGG). ERK/MAPK pathway was then determined as a downstream target of CBX7, which was inhibited by CBX7 overexpression in LUAD and LUSC cells. The overexpression of CBX7 inhibited the malignant progression of LUAD and LUSC cells probably via suppressing the ERK/MAPK signaling pathway in vitro and in vivo.
Collapse
|
7
|
Lin Z, Huang W, Yi Y, Li D, Xie Z, Li Z, Ye M. LncRNA ADAMTS9-AS2 is a Prognostic Biomarker and Correlated with Immune Infiltrates in Lung Adenocarcinoma. Int J Gen Med 2021; 14:8541-8555. [PMID: 34849000 PMCID: PMC8626860 DOI: 10.2147/ijgm.s340683] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background The role of long noncoding RNA (LncRNA) ADAMTS9 antisense RNA 2 (ADAMTS9-AS2) is unclear in lung adenocarcinoma (LUAD). The aim of this study was to explore the relationship between ADAMTS9-AS2 and LUAD, based on The Cancer Genome Atlas (TCGA) database and bioinformatics analysis. Methods Various statistical methods, Kaplan–Meier method, Cox regression analysis, GSEA, and immune infiltration analysis were used to evaluate the relationship between clinical features and ADAMTS9-AS2 expression, prognostic factors, and the significant involvement of ADAMTS9-AS2 in function. Results In LUAD patients, low expression of ADAMTS9-AS2 was associated with N stage (P=0.011), gender (P=0.002), number of packs smoked (P=0.024) and smoker (P<0.001). Low ADAMTS9-AS2 expression predicted a poorer overall survival (OS) (HR: 0.68; 95% CI: 0.51–0.91; P=0.01). And ADAMTS9-AS2 expression (HR: 0.626; 95% CI: 0.397–0.986; P=0.043) was independently correlated with OS in LUAD patients. Unwinding of DNA, extrinsic pathway, polo-like kinase-mediated events, cori cycle, MCM pathway, proteasome pathway, lagging strand synthesis and PCNA-dependent long patch base excision repair were differentially enriched in ADAMTS9-AS2 high expression phenotype. ADAMTS9-AS2 expression was correlated with certain immune infiltrating cells. Conclusion In LUAD patients, ADAMTS9-AS2 expression was significantly associated with poor survival and immune infiltration. ADAMTS9-AS2 may be a promising biomarker of prognosis and response to immunotherapy for LUAD.
Collapse
Affiliation(s)
- Zhichao Lin
- Department of Thoracic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, Guangdong, People's Republic of China
| | - Wenhai Huang
- Department of Thoracic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, Guangdong, People's Republic of China
| | - Yongsheng Yi
- Department of Thoracic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, Guangdong, People's Republic of China
| | - Dongbing Li
- MyGene Diagnostics Co., Ltd., Guangzhou, 510000, Guangdong, People's Republic of China
| | - Zehua Xie
- Department of Thoracic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, Guangdong, People's Republic of China
| | - Zumei Li
- Department of Thoracic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, Guangdong, People's Republic of China
| | - Min Ye
- Department of Thoracic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, Guangdong, People's Republic of China
| |
Collapse
|