1
|
Zhang Z, Luo Y, Liu Y, Ren J, Fang Z, Han Y. An Inflammation-Related lncRNA Signature for Prognostic Prediction in Colorectal Cancer. Cancer Rep (Hoboken) 2024; 7:e70043. [PMID: 39639610 PMCID: PMC11621381 DOI: 10.1002/cnr2.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) represents a commonly diagnosed malignancy affecting the digestive system. Mounting evidence shows long noncoding RNAs (lncRNAs) contribute to carcinogenesis. However, inflammation-related lncRNAs (IRLs) regulating CRC are poorly defined. AIMS The current study aimed to develop an IRL signature for predicting prognosis in CRC and to examine the involved molecular mechanism. METHODS AND RESULTS RNA-seq findings and patient data were retrieved from The Cancer Genome Atlas (TCGA), and inflammation-associated genes were obtained from the GeneCards database. IRLs with differential expression were determined with "limma" in R. Using correlation and univariable Cox analyses, prognostic IRLs were identified. The least absolute shrinkage and selection operator (LASSO) algorithm was employed to construct a prognostic model including 13 IRLs. The model's prognostic value was examined by Kaplan-Meier (K-M) survival curve and receiver operating characteristic (ROC) curve analyses. Furthermore, the association of the signature with the immune profile was assessed. Finally, RT-qPCR was carried out for verifying the expression of inflammation-related lncRNAs in nonmalignant and malignant tissue samples. A model containing 13 inflammation-related lncRNAs was built and utilized to classify cases into two risk groups based on risk score. The signature-derived risk score had a higher value in predicting survival compared with traditionally used clinicopathological properties in CRC cases. In addition, marked differences were detected in immune cells between the two groups, including CD4+ T cells and M2 macrophages. Furthermore, RT-qPCR confirmed the expression patterns of these 13 lncRNAs were comparable to those of the TCGA-CRC cohort. CONCLUSION The proposed 13-IRL signature is a promising biomarker and may help the clinical decision-making process and improve prognostic evaluation in CRC.
Collapse
Affiliation(s)
- Zhenling Zhang
- Department of Gastroenterology, the Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhaiChina
| | - Yingshu Luo
- Department of Gastroenterology, the Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhaiChina
| | - Yuan Liu
- Department of Gastroenterology, the Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhaiChina
| | - Jiangnan Ren
- Department of Gastroenterology, the Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhaiChina
| | - Zhaoxiong Fang
- Department of Gastroenterology, the Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhaiChina
| | - Yanzhi Han
- Department of Gastroenterology, the Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhaiChina
| |
Collapse
|
2
|
Lin Y, Zhao W, Pu R, Lv Z, Xie H, Li Y, Zhang Z. Long non‑coding RNAs as diagnostic and prognostic biomarkers for colorectal cancer (Review). Oncol Lett 2024; 28:486. [PMID: 39185489 PMCID: PMC11342420 DOI: 10.3892/ol.2024.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the 3rd most common cancer globally and is the 2nd leading cause of cancer-related death. Owing to the lack of specific early symptoms and the limitations of existing early diagnostic methods, most patients with CRC are diagnosed at advanced stages. To overcome these challenges, researchers have increasingly focused on molecular biomarkers, with particular interest in long non-coding RNAs (lncRNAs). These non-protein-coding RNAs, which exceed 200 nucleotides in length, play critical roles in the development and progression of CRC. The stability and detectability of lncRNAs in the circulatory system make them promising candidate biomarkers. The analysis of circulating lncRNAs in peripheral blood represents a potential option for minimally invasive diagnostic tests based on liquid biopsy samples. The present review aimed to evaluate the efficacy of lncRNAs with altered expression levels in peripheral blood as diagnostic markers for CRC. Additionally, the clinical significance of lncRNAs as prognostic markers for this disease were summarized.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Ruonan Pu
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Ying Li
- Department of Ultrasonography, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| |
Collapse
|
3
|
Elimam H, Eldeib MG, Kizilaslan EZ, Alhamshry NAA, Ashour AE, Elfar N, Abdel-Wahab MM, Zaki MB, Mohammed OA, Radwan AF, Abdel-Reheim MA, Moussa R, Doghish AS. Exploring the interplay of natural products and long non-coding RNAs in colorectal cancer: pathogenesis, diagnosis, and overcoming drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03425-9. [PMID: 39287672 DOI: 10.1007/s00210-024-03425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Colorectal cancer (CRC) is recognized as one of the most prevalent malignancies, both in terms of incidence and mortality rates. Current research into CRC has shed light on the molecular mechanisms driving its development. Several factors, including lifestyle, environmental influences, genetics, and diet, play significant roles in its pathogenesis. Natural compounds such as curcumin, tanshinone, lycorine, sinomenine, kaempferol, verbascoside, quercetin, berberine, and fisetin have shown great promise in the prevention and treatment of CRC. Research has also highlighted the significance of non-coding RNAs (ncRNAs) as biomarkers and therapeutic targets in CRC. Among these, long non-coding RNAs (lncRNAs) have been found to regulate the transcription of genes involved in cancer. LncRNAs contribute to cancer stem cell (CSC) proliferation, angiogenesis, epithelial-mesenchymal transition (EMT), and chemoresistance. Specific lncRNAs, including GAS5, LNC00337, HOTAIR, TPT1-AS1, cCSC1, BCAR4, TUG1, and Solh2, play crucial roles in these processes. They hold potential as novel biomarkers, detectable in bodily fluids and tissues, and could serve as therapeutic targets due to their involvement in drug resistance and sensitivity. These insights could improve CRC treatment strategies, addressing resistance to chemotherapy and radiotherapy. This review article aims to provide a comprehensive analysis of the current knowledge regarding the effectiveness of natural anti-cancer agents in CRC treatment. Additionally, it offers an in-depth evaluation of lncRNAs in CRC, their role in the disease's progression, and their potential applications in its management.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Mahmoud Gomaa Eldeib
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11231, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, 41636, Egypt
| | | | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Abdelkader E Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Salman International University, Ras Sudr, South Sinai, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
- Egyptian Drug Authority, Ministry of Health and Population, Cairo, 11567, Egypt
| | - Maie M Abdel-Wahab
- Department of Biochemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, 41636, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmacology, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt.
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo, Badr City, 11829, Cairo, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
4
|
Zhang X, Zhang Y, Liu Q, Zeng A, Song L. Glycolysis-associated lncRNAs in cancer energy metabolism and immune microenvironment: a magic key. Front Immunol 2024; 15:1456636. [PMID: 39346921 PMCID: PMC11437524 DOI: 10.3389/fimmu.2024.1456636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
The dependence of tumor cells on glycolysis provides essential energy and raw materials for their survival and growth. Recent research findings have indicated that long chain non-coding RNAs (LncRNAs) have a key regulatory function in the tumor glycolytic pathway and offer new opportunities for cancer therapy. LncRNAs are analogous to a regulatory key during glycolysis. In this paper, we review the mechanisms of LncRNA in the tumor glycolytic pathway and their potential therapeutic strategies, including current alterations in cancer-related energy metabolism with lncRNA mediating the expression of key enzymes, lactate production and transport, and the mechanism of interaction with transcription factors, miRNAs, and other molecules. Studies targeting LncRNA-regulated tumor glycolytic pathways also offer the possibility of developing new therapeutic strategies. By regulating LncRNA expression, the metabolic pathways of tumor cells can be interfered with to inhibit tumor growth and metastasis, thus affecting the immune and drug resistance mechanisms of tumor cells. In addition, lncRNAs have the capacity to function as molecular markers and target therapies, thereby contributing novel strategies and approaches to the field of personalized cancer therapy and prognosis evaluation. In conclusion, LncRNA, as key molecules regulating the tumor glycolysis pathway, reveals a new mechanism of abnormal metabolism in cancer cells. Future research will more thoroughly investigate the specific mechanisms of LncRNA glycolysis regulation and develop corresponding therapeutic strategies, thereby fostering new optimism for the realization of precision medicine.
Collapse
Affiliation(s)
- Xi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yunchao Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Qian Z, Wu F, Feng G, Lin W, Cai X, Wu J, Ke K, Ye Z, Xu G. A prognostic risk model based on lactate metabolism and transport-related lncRNAs for gastric adenocarcinoma. Biomarkers 2024; 29:211-221. [PMID: 38629165 DOI: 10.1080/1354750x.2024.2341411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/04/2024] [Indexed: 05/15/2024]
Abstract
BACKGROUND Increased lactate levels and metastasis in tumours are strongly associated with dismal outcomes. But prognostic value of lactate metabolism and transport-related lncRNAs in gastric adenocarcinoma (GA) patients remains unaddressed. METHODS Gene expression data of GA were provided by The Cancer Genome Atlas. Lactate metabolism and transport-related gene data were accessed from GSEA. LncRNAs related to lactate metabolism and transport were identified by correlation analysis. A prognostic model was built by regression analysis. Validity of prognostic model was confirmed through survival analysis and receiver operating characteristic (ROC) curve. Immunity of each risk group was evaluated by immune correlation analysis .LncRNA-mRNA network was built by correlation analysis using Cytoscape software. RESULTS A 12-gene prognostic model based on lactate metabolism and transport-related lncRNAs was built in GA. Median riskscore was utilized to classify GA samples into high- and low-risk groups. Survival analysis and ROC curves demonstrated validity of prognostic model. Most immune checkpoint molecules and TIDE scores were lower in the low-risk group. LINC01303 and LINC01545 may be the key prognostic factors in patients with GA. CONCLUSION This study successfully built a prognostic model of lactate metabolism and transport-related lncRNAs in GA. The findings guide prognostic management of GA patients.
Collapse
Affiliation(s)
- Zhenyuan Qian
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fang Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guoqing Feng
- Department of General Surgery, Haining Traditional Chinese Medicine Hospital, Haining, Jiaxing, Zhejiang, China
| | - Wenfa Lin
- Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Xufan Cai
- Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Jianzhang Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Ke
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zaiyuan Ye
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guoxi Xu
- Department of Gastrointestinal Surgery, Jinjiang Municipal Hospital, Jinjiang, Quanzhou, Fujian, China
| |
Collapse
|
6
|
Ruan L, Lei J, Yuan Y, Li H, Yang H, Wang J, Zhang Q. MIR31HG, a potential lncRNA in human cancers and non-cancers. Front Genet 2023; 14:1145454. [PMID: 37636269 PMCID: PMC10449471 DOI: 10.3389/fgene.2023.1145454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Long non-coding RNAs have recently attracted considerable attention due to their aberrant expression in human diseases. LncMIR31HG is a novel lncRNA that is abnormally expressed in multiple diseases and implicated in various stages of disease progression. A large proportion of recent studies have indicated that MIR31HG has biological functions by triggering various signalling pathways in the pathogenesis of human diseases, especially cancers. More importantly, the abnormal expression of MIR31HG makes it a potential biomarker in diagnosis and prognosis, as well as a promising target for treatments. This review aims to systematically summarize the gene polymorphism, expression profiles, biological roles, underlying mechanisms, and clinical applications of MIR31HG in human diseases.
Collapse
Affiliation(s)
- Luxi Ruan
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Lei
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yihang Yuan
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huizi Li
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Yang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyan Wang
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Quanan Zhang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Hu Y, Mu H, Deng Z. RBM14 as a novel epigenetic-activated tumor oncogene is implicated in the reprogramming of glycolysis in lung cancer. World J Surg Oncol 2023; 21:132. [PMID: 37060064 PMCID: PMC10105460 DOI: 10.1186/s12957-023-02928-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/05/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND RNA-binding motif protein 14 (RBM14) is upregulated in a variety of tumors. However, the expression and biological role of RBM14 in lung cancer remain unclear. METHODS Chromatin immunoprecipitation and PCR were carried out to measure the levels of sedimentary YY1, EP300, H3K9ac, and H3K27ac in the RBM14 promoter. Co-immunoprecipitation was used to verify the interaction between YY1 and EP300. Glycolysis was investigated according to glucose consumption, lactate production, and the extracellular acidification rate (ECAR). RESULTS RBM14 level is increased in lung adenocarcinoma (LUAD) cells. The increased RBM14 expression was correlated with TP53 mutation and individual cancer stages. A high level of RBM14 predicted a poorer overall survival of LUAD patients. The upregulated RBM14 in LUAD is induced by DNA methylation and histone acetylation. The transcription factor YY1 directly binds to EP300 and recruits EP300 to the promoter regions of RBM14, which further enhances H3K27 acetylation and promotes RBM14 expression. YY1-induced upregulation of RBM14 promoted cell growth and inhibited apoptosis by affecting the reprogramming of glycolysis. CONCLUSIONS These results indicated that epigenetically activated RBM14 regulated growth and apoptosis by regulating the reprogramming of glycolysis and RBM14 may serve as a promising biomarker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Yan Hu
- Department of Respiratory, The First People's Hospital of Zigong City, No.42, Shangyihao Road, Ziliujing District, Zigong City, 643000, Sichuan, China
| | - Hanshuo Mu
- Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhiping Deng
- Department of Respiratory, The First People's Hospital of Zigong City, No.42, Shangyihao Road, Ziliujing District, Zigong City, 643000, Sichuan, China.
| |
Collapse
|
8
|
Li M, Wei J, Xue C, Zhou X, Chen S, Zheng L, Duan Y, Deng H, Xiong W, Tang F, Li G, Zhou M. Dissecting the roles and clinical potential of YY1 in the tumor microenvironment. Front Oncol 2023; 13:1122110. [PMID: 37081988 PMCID: PMC10110844 DOI: 10.3389/fonc.2023.1122110] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Yin-Yang 1 (YY1) is a member of the GLI-Kruppel family of zinc finger proteins and plays a vital dual biological role in cancer as an oncogene or a tumor suppressor during tumorigenesis and tumor progression. The tumor microenvironment (TME) is identified as the “soil” of tumor that has a critical role in both tumor growth and metastasis. Many studies have found that YY1 is closely related to the remodeling and regulation of the TME. Herein, we reviewed the expression pattern of YY1 in tumors and summarized the function and mechanism of YY1 in regulating tumor angiogenesis, immune and metabolism. In addition, we discussed the potential value of YY1 in tumor diagnosis and treatment and provided a novel molecular strategy for the clinical diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- MengNa Li
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - JianXia Wei
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - ChangNing Xue
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - XiangTing Zhou
- The First Clinical College of Changsha Medical University, Changsha, China
| | - ShiPeng Chen
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - LeMei Zheng
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - YuMei Duan
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - HongYu Deng
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - FaQing Tang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - GuiYuan Li
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Ming Zhou,
| |
Collapse
|
9
|
Yao J, Chen Y, Lin Z. Exosomes: Mediators in microenvironment of colorectal cancer. Int J Cancer 2023. [PMID: 36760212 DOI: 10.1002/ijc.34471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/08/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
Tumor microenvironment, the soil where tumor thrives, plays a critical role in the development and progression of colorectal cancer (CRC). Various cell signaling molecules in the environment promote tumor angiogenesis, immune tolerance and facilitate immune escape. Exosomes, as messengers between tumor and host cells, are considered key mediators involved in the tumor-accelerating environment. However, the exosome-mediated communication networks in the CRC microenvironment are still largely unclear. In this review, we summarized the relationship between TME and CRC based on recent literature. Then, we revealed the unique impacts and signal molecules of exosomes on account of their regulatory role in the flora, hypoxia, inflammatory and immunological microenvironment of CRC. Finally, we summarized the therapeutically effective of exosomes in CRC microenvironment and discussed their current status and prospects, aiming to provide new molecular targets and a theoretical basis for the CRC treatment.
Collapse
Affiliation(s)
- Jiali Yao
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yingrui Chen
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Zhijie Lin
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Lu C, Zhang C. Oxaliplatin inhibits colorectal cancer progression by inhibiting CXCL11 secreted by cancer-associated fibroblasts and the CXCR3/PI3K/AKT pathway. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:160-172. [PMID: 36129606 DOI: 10.1007/s12094-022-02922-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/02/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Colorectal cancer (CRC) is a malignant tumor. Oxaliplatin (OXA) can inhibit cancer-associated fibroblasts (CAFs)-induced cancer progression. This study sought to explore the mechanism of OXA in CAFs-induced CRC development. METHODS CRC cell lines (Caco-2, SW620), normal fibroblasts (NFs), and CAFs were treated with OXA. NFs and CAFs were cultured. CAFs were treated with/without OXA (0.4 mM), and the supernatant was extracted as the conditioned medium (CM) to culture CRC cells. Cell malignant episodes, E-cadherin and Vimentin levels, CXCL1, CXCL2, CXCL3, CXCL8, and CXCL11 mRNA levels, CXCL11 protein level, and extracellular release were assessed. CAFs were transfected with interfering RNA sh-CXCL11 to silence CXCL11 or transfected with CXCL11 overexpression plasmids and treated with OXA to explore the role of CXCL11 in OXA-mediated CRC cells through CAFs. CXCL11 receptor CXCR3 levels in CRC cells and the PI3K/AKT pathway changes were examined. The xenogeneic tumor was transplanted in nude mice. CXCL11 and CXCR3 levels in tumor tissues, tumor volume, shape, size, weight, and Ki67 positive expressions were assessed. RESULTS CRC cell growths and epithelial-mesenchymal transformation were stimulated after culture with CAFs-CM, while OXA averted these trends. CXCL11 mRNA level was elevated most significantly, and its protein and extracellular secretion levels were raised, while OXA diminished the levels. CXCL11 silencing weakened the effects of CAFs-CM on promoting CRC proliferation and malignant episodes and CXCL11 overexpression averted OXA property on inhibiting CAFs-promoted CRC cell growth. CXCR3 and PI3K and AKT1 phosphorylation levels were raised in the CAFs-CM group but diminished by OXA. CXCL11 overexpression in CAFs averted OXA property on inhibiting CAFs-activated CXCR3/PI3K/AKT in CRC cells. OXA also inhibited the progression of xenograft tumors by limiting CAFs-secreted CXCL11. CONCLUSIONS OXA repressed CRC progression by inhibiting CAFs-secreted CXCL11 and the CXCR3/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Caifu Lu
- Department of Proctology, Aikang Hospital, Huangshi, 435000, Hubei Province, China
| | - Cong Zhang
- Department of Acupuncture, Huangshi Traditional Chinese Medicine Hospital, 6 Square Road, Huangshi, 435000, Hubei Province, China.
| |
Collapse
|
11
|
Kolenda T, Paszkowska A, Braska A, Kozłowska-Masłoń J, Guglas K, Poter P, Wojtczak P, Bliźniak R, Lamperska K, Teresiak A. Host gene and its guest: short story about relation of long-noncoding MIR31HG transcript and microRNA miR-31. Rep Pract Oncol Radiother 2023; 28:114-134. [PMID: 37122913 PMCID: PMC10132190 DOI: 10.5603/rpor.a2023.0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/25/2023] [Indexed: 05/02/2023] Open
Abstract
Epigenetics is the changes in a cellular phenotype without changes in the genotype. This term is not limited only to the modification of chromatin and DNA but also relates to some RNAs, like non-coding RNAs (ncRNAs), both short and long RNAs (lncRNAs) acting as molecular modifiers. Mobile RNAs, as a free form or encapsulated in exosomes, can regulate neighboring cells or be placed in distant locations. It underlines the vast capacity of ncRNAs as epigenetic elements of transmission information and message of life. One of the amazing phenomena is long non-coding microRNA-host-genes (lnc-MIRHGs) whose processed transcripts function as lncRNAs and also as short RNAs named microRNAs (miRNAs). MIR31HG functions as a modulator of important biological and cellular processes including cell proliferation, apoptosis, cell cycle regulation, EMT process, metastasis, angiogenesis, hypoxia, senescence, and inflammation. However, in most cases, the role of MIR31HG is documented only by one study and there is a lack of exact description of molecular pathways implicated in these processes, and for some of them, such as response to irradiation, no studies have been done. In this review, MIR31HG, as an example of lnc-MIRHGs, was described in the context of its known function and its potential uses as a biomarker in oncology.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
| | - Anna Paszkowska
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
- Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Alicja Braska
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
| | - Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University, Poznań, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Paulina Poter
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, Greater Poland Cancer Center, Poznan, Poland
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | | | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
| |
Collapse
|
12
|
Cheng Y, Wu X, Xia Y, Liu W, Wang P. The role of lncRNAs in regulation of DKD and diabetes-related cancer. Front Oncol 2022; 12:1035487. [PMID: 36313695 PMCID: PMC9606714 DOI: 10.3389/fonc.2022.1035487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetes mellitus often results in several complications, such as diabetic kidney disease (DKD) and end-stage renal diseases (ESRDs). Cancer patients often have the dysregulated glucose metabolism. Abnormal glucose metabolism can enhance the tumor malignant progression. Recently, lncRNAs have been reported to regulate the key proteins and signaling pathways in DKD development and progression and in cancer patients with diabetes. In this review article, we elaborate the evidence to support the function of lncRNAs in development of DKD and diabetes-associated cancer. Moreover, we envisage that lncRNAs could be diagnosis and prognosis biomarkers for DKD and cancer patients with diabetes. Furthermore, we delineated that targeting lncRNAs might be an alternative approach for treating DKD and cancer with dysregulated glucose metabolism.
Collapse
Affiliation(s)
- Yawei Cheng
- Department of Disease Prevention, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
- *Correspondence: Yawei Cheng, ; Peter Wang,
| | - Xiaowen Wu
- Department of Disease Prevention, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, China
| | - Yujie Xia
- Department of Food Science and Technology Centers, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Wenjun Liu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
| | - Peter Wang
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
- *Correspondence: Yawei Cheng, ; Peter Wang,
| |
Collapse
|
13
|
He J, Wu W. Comprehensive landscape and future perspectives of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC): Based on a bibliometric analysis. Noncoding RNA Res 2022; 8:33-52. [PMID: 36311994 PMCID: PMC9582894 DOI: 10.1016/j.ncrna.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
This review aimed to use bibliometric analysis to sort out, analyze and summarize the knowledge foundation and hot topics in the field of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC), and point out future trends to inspire related research and innovation. We used CiteSpace to analyze publication outputs, countries, institutions, authors, journals, references, and keywords. Knowledge foundations, hotspots, and future trends were then depicted. The overall research showed the trend of biomedical-oriented multidisciplinary. Much evidence indicates that lncRNA plays the role of oncogene or tumor suppressor in the occurrence and development of CRC. Besides, many lncRNAs have multiple mechanisms. lncRNAs and metastasis of CRC, lncRNAs and drug resistance of CRC, and the clinical application of lncRNAs in CRC are current research hotspots. Through insight into the development trend of lncRNAs in CRC, this study will help researchers extract hidden valuable information for further research.
Collapse
Affiliation(s)
- Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| | - Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China,Corresponding author.
| |
Collapse
|
14
|
Zhang G, Wang T, Huang Z, Chen Y, Sun L, Xia X, He F, Fan C, Wang S, Liu W. METTL3 dual regulation of the stability of LINC00662 and VEGFA RNAs promotes colorectal cancer angiogenesis. Discov Oncol 2022; 13:89. [PMID: 36114893 PMCID: PMC9482670 DOI: 10.1007/s12672-022-00557-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
PURPOSE The angiogenesis is among the primary factors that affect tumor recurrence and distant organ metastasis in colorectal cancer (CRC). N6-methyladenosine (m6A) modification is one of the most common chemical modifications in eukaryotic mRNA, especially at the post-transcriptional level. Methyltransferase-like 3 (METTL3) promoting angiogenesis in a variety of tumors has been reported. However, the mechanism of how METTL3 dual-regulates the stability of long non-coding RNAs (lncRNAs) and vascular-related factor RNAs to affect angiogenesis in CRC is unclear. METHODS 64 paired CRC and adjacent normal tissues were collected. In vitro, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), actinomycin assay, methylated RNA immunoprecipitation (MeRIP) experiment,3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) and colony formation assay were performed. The functions were also studied in zebrafish model animals in vivo. RESULTS We found that the vascular endothelial growth factor A(VEGFA), METTL3 and LINC00662 RNAs were highly expressed in CRC, and that METTL3 was significantly positively correlated with LINC00662 and VEGFA. The protein expression levels of CD31, CD34, VEGFA, m6A and METTL3 were all significantly increased in the CRC tissues. The angiogenesis experiments both in vivo and in vitro found that METTL3 and LINC00662 promoted angiogenesis in CRC. The actinomycin assay indicated that METTL3 maintained the stability of LINC00662 and VEGFA RNAs. In addition, the MeRIP experiment confirmed that the LINC00662 and VEGFA RNAs had METTL3-enriched sites. CONCLUSION These findings suggest that METTL3 and LINC00662 may both serve as diagnostic and prognostic predictive biomarkers for CRC and potential targets for anti-vascular therapy.
Collapse
Affiliation(s)
- Guoying Zhang
- Department of General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China
- Department of Clinical Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing University of Traditional Chinese Medicine, No. 179, Xiaolingwei Street, Nanjing, 210014, Jiangsu, China
| | - Tianjun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zihui Huang
- Department of Clinical Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing University of Traditional Chinese Medicine, No. 179, Xiaolingwei Street, Nanjing, 210014, Jiangsu, China
| | - Yuanyuan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Sun
- Department of General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Xia Xia
- Department of Clinical Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing University of Traditional Chinese Medicine, No. 179, Xiaolingwei Street, Nanjing, 210014, Jiangsu, China
| | - Fang He
- Department of Clinical Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing University of Traditional Chinese Medicine, No. 179, Xiaolingwei Street, Nanjing, 210014, Jiangsu, China
| | - Chenying Fan
- Department of Clinical Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing University of Traditional Chinese Medicine, No. 179, Xiaolingwei Street, Nanjing, 210014, Jiangsu, China
| | - Shukui Wang
- Department of General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China.
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wanli Liu
- Department of Clinical Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing University of Traditional Chinese Medicine, No. 179, Xiaolingwei Street, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
15
|
Yan S, Wang S, Wang X, Dai W, Chu J, Cheng M, Guo Z, Xu D. Emerging role of non-coding RNAs in glucose metabolic reprogramming and chemoresistance in colorectal cancer. Front Oncol 2022; 12:954329. [PMID: 35978828 PMCID: PMC9376248 DOI: 10.3389/fonc.2022.954329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Metabolic reprogramming plays a critical role in colorectal cancer (CRC). It contributes to CRC by shaping metabolic phenotypes and causing uncontrolled proliferation of CRC cells. Glucose metabolic reprogramming is common in carcinogenesis and cancer progression. Growing evidence has implicated the modifying effects of non-coding RNAs (ncRNAs) in glucose metabolic reprogramming and chemoresistance in CRC. In this review, we have summarized currently published studies investigating the role of ncRNAs in glucose metabolic alterations and chemoresistance in CRC. Elucidating the interplay between ncRNAs and glucose metabolic reprogramming provides insight into exploring novel biomarkers for the diagnosis and prognosis prediction of CRC.
Collapse
Affiliation(s)
- Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Shufeng Wang
- Medical Experimental Training Center, Weifang Medical University, Weifang, China
| | - Xinyi Wang
- Clinical Medicine of Basic Medical School, Shandong First Medical University, Jinan, China
| | - Wenqing Dai
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Jinjin Chu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, China
| | - Zhiliang Guo
- Department of Spine Surgery, The 80th Group Army Hospital of Chinese People’s Liberation Army (PLA), Weifang, China
- *Correspondence: Zhiliang Guo, ; Donghua Xu,
| | - Donghua Xu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
- Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, China
- *Correspondence: Zhiliang Guo, ; Donghua Xu,
| |
Collapse
|
16
|
Zhang W, Liu Z, Wang J, Geng B, Hou W, Zhao E, Li X. The clinical significance, immune infiltration, and tumor mutational burden of angiogenesis-associated lncRNAs in kidney renal clear cell carcinoma. Front Immunol 2022; 13:934387. [PMID: 35958561 PMCID: PMC9360495 DOI: 10.3389/fimmu.2022.934387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background Poor prognosis of kidney renal clear cell carcinoma (KIRC) is often related to angiogenesis. The lncRNAs that regulate angiogenesis could also affect the prognosis of KIRC. It is meaningful for us to use lncRNAs related to angiogenesis to construct a generic, individualized prognostic signature for patients with KIRC. Methods We identified eight angiogenesis-associated genes (AAGs) by differential expression analysis and univariate Cox regression from The Cancer Genome Atlas dataset, including 537 KIRC samples and 72 normal samples. In total, 23 prognostic lncRNAs were screened out after Pearson correlation analysis and univariate Cox regression analysis. Then, we performed least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression to establish a four-AAG-related lncRNA prognostic signature. Results The risk score was calculated for each KIRC patients by using a four-AAG-related lncRNA prognostic signature. We divided the KIRC patients into high- and low-risk groups by the median of the risk score. It was confirmed that the AAG-related lncRNA prognostic signature has good prognostic value for KIRC patients by time-dependent receiver operating characteristic and Kaplan–Meier survival analysis. We identified 3,399 differentially expressed genes between the high- and low-risk groups and performed their functional enrichment analyses. The AAG-related lncRNA prognostic signature was an independent prognostic predictor for KIRC patients and was used to perform a combined nomogram. We reevaluated them in terms of survival, clinic characteristics, tumor-infiltrating immune cells and tumor mutation burden. Conclusion Our research indicates that the AAG-related lncRNA prognostic signature is a promising and potential independent prognostic indicator for KIRC patients. Then, it could offer new insights into the prognosis assessment and potential treatment strategies of KIRC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuedong Li
- *Correspondence: Enyang Zhao, ; Xuedong Li,
| |
Collapse
|
17
|
Chen L, Lin Y, Wei W, Wang Y, Li F, Du W, Yang Z, Hu Y, Ying X, Tang Q, Xie J, Yu H. Combining Single-Cell and Transcriptomic Data Revealed the Prognostic Significance of Glycolysis in Pancreatic Cancer. Front Genet 2022; 13:903783. [PMID: 35865013 PMCID: PMC9294390 DOI: 10.3389/fgene.2022.903783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Pancreatic cancer (PC), the most common fatal solid malignancy, has a very dismal prognosis. Clinical computerized tomography (CT) and pathological TNM staging are no longer sufficient for determining a patient’s prognosis. Although numerous studies have suggested that glycolysis is important in the onset and progression of cancer, there are few publications on its impact on PC. Methods: To begin, the single-sample gene set enrichment analysis (ssGSEA) approach was used to quantify the glycolysis pathway enrichment fraction in PC patients and establish its prognostic significance. The genes most related to the glycolytic pathway were then identified using weighted gene co-expression network analysis (WGCNA). The glycolysis-associated prognostic signature in PC patients was then constructed using univariate Cox regression and lasso regression methods, which were validated in numerous external validation cohorts. Furthermore, we investigated the activation of the glycolysis pathway in PC cell subtypes at the single-cell level, performed a quasi-time series analysis on the activated cell subtypes and then detected gene changes in the signature during cell development. Finally, we constructed a decision tree and a nomogram that could divide the patients into different risk subtypes, according to the signature score and their different clinical characteristics and assessed the prognosis of PC patients. Results: Glycolysis plays a risky role in PC patients. Our glycolysis-related signature could effectively discriminate the high-risk and low-risk patients in both the trained cohort and the independent externally validated cohort. The survival analysis and multivariate Cox analysis indicated this gene signature to be an independent prognostic factor in PC. The prognostic ROC curve analysis suggested a high accuracy of this gene signature in predicting the patient prognosis in PC. The single-cell analysis suggested that the glycolytic pathway may be more activated in epithelial cells and that the genes in the signature were also mainly expressed in epithelial cells. The decision tree analysis could effectively identify patients in different risk subgroups, and the nomograms clearly show the prognostic assessment of PC patients. Conclusion: Our study developed a glycolysis-related signature, which contributes to the risk subtype assessment of patients with PC and to the individualized management of patients in the clinical setting.
Collapse
Affiliation(s)
- Liang Chen
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Yunhua Lin
- The First Clinical Medical College, Guangxi Medical University, Nanning, China
| | - Wei Wei
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Yue Wang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Fuyang, China
| | - Fangyue Li
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Wang Du
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Zhonghua Yang
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Yiming Hu
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Xiaomei Ying
- Department of General Surgery, Suzhou Hospital of Anhui Province, Suzhou, China
| | - Qikai Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- *Correspondence: Jiaheng Xie, ; Hongzhu Yu,
| | - Hongzhu Yu
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
- *Correspondence: Jiaheng Xie, ; Hongzhu Yu,
| |
Collapse
|
18
|
Ko CC, Hsieh YY, Yang PM. Long Non-Coding RNA MIR31HG Promotes the Transforming Growth Factor β-Induced Epithelial-Mesenchymal Transition in Pancreatic Ductal Adenocarcinoma Cells. Int J Mol Sci 2022; 23:6559. [PMID: 35743003 PMCID: PMC9223781 DOI: 10.3390/ijms23126559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) describes a biological process in which polarized epithelial cells are converted into highly motile mesenchymal cells. It promotes cancer cell dissemination, allowing them to form distal metastases, and also involves drug resistance in metastatic cancers. Transforming growth factor β (TGFβ) is a multifunctional cytokine that plays essential roles in development and carcinogenesis. It is a major inducer of the EMT. The MIR31 host gene (MIR31HG) is a newly identified long non-coding (lnc)RNA that exhibits ambiguous roles in cancer. In this study, a cancer genomics analysis predicted that MIR31HG overexpression was positively correlated with poorer disease-free survival of pancreatic ductal adenocarcinoma (PDAC) patients, which was associated with upregulation of genes related to TGFβ signaling and the EMT. In vitro evidence demonstrated that TGFβ induced MIR31HG expression in PDAC cells, and knockdown of MIR31HG expression reversed TGFβ-induced EMT phenotypes and cancer cell migration. Therefore, MIR31HG has an oncogenic role in PDAC by promoting the EMT.
Collapse
Affiliation(s)
- Ching-Chung Ko
- Department of Medical Imaging, Chi Mei Medical Center, Tainan 71004, Taiwan;
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Yao-Yu Hsieh
- Division of Hematology and Oncology, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan;
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Ming Yang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- TMU and Affiliated Hospitals Pancreatic Cancer Groups, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
19
|
Zhong X, He X, Wang Y, Hu Z, Huang H, Zhao S, Zhang H, Wei P, Li D. Construction of a prognostic glycolysis-related lncRNA signature for patients with colorectal cancer. Cancer Med 2022; 12:930-948. [PMID: 35616307 PMCID: PMC9844662 DOI: 10.1002/cam4.4851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 01/26/2023] Open
Abstract
Aerobic glycolysis is a common metabolic phenotype in tumors that helps cancer cells adjust to severe living conditions and can aid metastasis in several types of carcinomas, including colorectal cancer (CRC). Long non-coding RNAs (lncRNAs) can influence tumor biology and have been previously used to assess patients' outcomes and to identify potential therapeutic targets. However, despite the importance of glycolysis-related lncRNAs (GRLs) in the development of CRC, studies on their use as prognostic markers are still limited. Herein, we applied a series of bioinformatic analyses to screen potential prognostic lncRNAs for colorectal cancer. Out of all lncRNAs screened, nine GRLs were selected to constitute a prognostic signature. Based on the signature, two molecular subtypes were classified with distinct prognostic outcomes and excellent diagnostic accuracy (The 1-, 3- and 5-year AUC are 0.756, 0.716, and 0.721, respectively). The prognostic value of this signature was further validated using another cohort. The enriched molecular pathways, immune infiltration, and mutation landscape were also significantly different between the two groups. The different drug sensitivity results between the two groups suggest a potential strategy for precise treatment. Furthermore, we confirmed that AFAP1-AS1 could regulate aerobic glycolysis and metastasis of CRC cells. Overall, we developed a glycolysis-related lncRNA (GRL) signature and suggested that this signature could offer a predictive value and identify potential therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Xinyang Zhong
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Xuefeng He
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Yaxian Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Zijuan Hu
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina,Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina,Cancer Institute, Fudan University Shanghai Cancer CenterShanghaiChina,Institute of PathologyFudan UniversityShanghaiChina
| | - Huixia Huang
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina,Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina,Cancer Institute, Fudan University Shanghai Cancer CenterShanghaiChina,Institute of PathologyFudan UniversityShanghaiChina
| | - Senlin Zhao
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Hong Zhang
- Colorectal Tumor Surgery Ward, Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Ping Wei
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina,Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina,Cancer Institute, Fudan University Shanghai Cancer CenterShanghaiChina,Institute of PathologyFudan UniversityShanghaiChina
| | - Dawei Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| |
Collapse
|
20
|
Chang L, Yang P, Zhang C, Zhu J, Zhang Y, Wang Y, Ding J, Wang K. Long intergenic non-protein-coding RNA 467 promotes tumor progression and angiogenesis via the microRNA-128-3p/vascular endothelial growth factor C axis in colorectal cancer. Bioengineered 2022; 13:12392-12408. [PMID: 35587748 PMCID: PMC9275949 DOI: 10.1080/21655979.2022.2074666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are important regulators and biomarkers of tumorigenesis and tumor metastasis. Long intergenic non-protein-coding RNA 467 (LINC00467) is associated with various cancers. However, the role and mechanism of LINC00467 in colorectal cancer (CRC) promotion are poorly understood. This study aimed to present new details of LINC00467 in the progression of CRC. Reverse transcription–polymerase chain reaction demonstrated that the expression level of LINC00467 in CRC tissues and cell lines was significantly upregulated, which was closely related to the clinical features of CRC. Cell and animal studies showed that the downregulation of LINC00467 expression in CRC cells significantly inhibited cell proliferation, metastasis, and angiogenesis. Moreover, the overexpression of LINC00467 accelerated CRC promotion. Bioinformatics analysis and luciferase reporter assay confirmed that LINC00467 binds to miR-128-3p. Rescue experiments manifested that decreased miR-128-3p level reversed CRC cell inhibition by silencing LINC00467. Furthermore, vascular endothelial growth factor C (VEGFC) was identified as a target of miR-128-3p that could reverse the inhibition of cell growth that is mediated by miR-128-3p. Altogether, our results showed that LINC00467 contributes to CRC progression and angiogenesis via the miR-128-3p/VEGFC axis. Our findings expand the understanding of the mechanisms underlying CRC and suggest potential targets for clinical strategies against CRC.
Collapse
Affiliation(s)
- Lisha Chang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peipei Yang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Zhu
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yirao Zhang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Ding
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
RIG-I Promotes Cell Viability, Colony Formation, and Glucose Metabolism and Inhibits Cell Apoptosis in Colorectal Cancer by NF- κB Signaling Pathway. DISEASE MARKERS 2022; 2022:1247007. [PMID: 35242239 PMCID: PMC8888050 DOI: 10.1155/2022/1247007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/03/2022]
Abstract
Background Retinoic acid-inducible gene-I (RIG-I) has crucial effects on various cancers, while RIG-I's detailed roles and mechanism in colorectal cancer (CRC) are uncovered. Methods qRT-PCR was used to detect the expression of RIG-I in CRC, adjacent nontumor specimens, and five cell lines. CCK-8, colony formation, and flow cytometry assays were conducted to study CRC cell viabilities. Extracellular acidification rates, lactate analysis, and ATP analysis were conducted to study the cell viabilities and glucose metabolism of CRC cells. Western blot is used to determine the proteins of NF-κBp65 in the nucleus and cytoplasm. Results This study revealed the upregulation of RIG-I in CRC tissues and cells and that high RIG-I expression was correlated with poor prognosis of CRC patients. In addition, silencing RIG-I inhibited cell viability as well as colony formation and promoted cell apoptosis in CRC cells, while RIG-I knockdown suppressed transplanted tumor growth and facilitated apoptosis in nude mice. Moreover, silencing RIG-I inhibited glucose metabolism by decreasing extracellular acidification rate, lactate production, adenosine triphosphate, and content of hypoxia-inducible factor 1α and pyruvate kinase isoform. 2.2-Deoxy-d-glucose, a glycolysis inhibitor, reduced the growth of CRC cells and promoted apoptosis in vitro and in vivo. In addition, RIG-I knockdown decreased NF-κB nuclear translocation. Besides, inhibiting NF-κB effectively eliminated RIG-I overexpression roles in cell viability and glucose metabolism in CRC cells. Conclusion In summary, this study revealed that RIG-I mediated CRC cell proliferation, apoptosis, and glucose metabolism at least partly by NF-κB signaling pathway.
Collapse
|