1
|
Kyriazi AA, Karaglani M, Agelaki S, Baritaki S. Intratumoral Microbiome: Foe or Friend in Reshaping the Tumor Microenvironment Landscape? Cells 2024; 13:1279. [PMID: 39120310 PMCID: PMC11312414 DOI: 10.3390/cells13151279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
The role of the microbiome in cancer and its crosstalk with the tumor microenvironment (TME) has been extensively studied and characterized. An emerging field in the cancer microbiome research is the concept of the intratumoral microbiome, which refers to the microbiome residing within the tumor. This microbiome primarily originates from the local microbiome of the tumor-bearing tissue or from translocating microbiome from distant sites, such as the gut. Despite the increasing number of studies on intratumoral microbiome, it remains unclear whether it is a driver or a bystander of oncogenesis and tumor progression. This review aims to elucidate the intricate role of the intratumoral microbiome in tumor development by exploring its effects on reshaping the multileveled ecosystem in which tumors thrive, the TME. To dissect the complexity and the multitude of layers within the TME, we distinguish six specialized tumor microenvironments, namely, the immune, metabolic, hypoxic, acidic, mechanical and innervated microenvironments. Accordingly, we attempt to decipher the effects of the intratumoral microbiome on each specialized microenvironment and ultimately decode its tumor-promoting or tumor-suppressive impact. Additionally, we portray the intratumoral microbiome as an orchestrator in the tumor milieu, fine-tuning the responses in distinct, specialized microenvironments and remodeling the TME in a multileveled and multifaceted manner.
Collapse
Affiliation(s)
- Athina A. Kyriazi
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Makrina Karaglani
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
- Laboratory of Hygiene and Environmental Protection, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| |
Collapse
|
2
|
Bi X, Wang J, Liu C. Intratumoral Microbiota: Metabolic Influences and Biomarker Potential in Gastrointestinal Cancer. Biomolecules 2024; 14:917. [PMID: 39199305 PMCID: PMC11353126 DOI: 10.3390/biom14080917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Gastrointestinal (GI) cancers impose a substantial global health burden, highlighting the necessity for deeper understanding of their intricate pathogenesis and treatment strategies. This review explores the interplay between intratumoral microbiota, tumor metabolism, and major types of GI cancers (including esophageal, gastric, liver, pancreatic, and colorectal cancers), summarizing recent studies and elucidating their clinical implications and future directions. Recent research revealed altered microbial signatures within GI tumors, impacting tumor progression, immune responses, and treatment outcomes. Dysbiosis-induced alterations in tumor metabolism, including glycolysis, fatty acid metabolism, and amino acid metabolism, play critical roles in cancer progression and therapeutic resistance. The integration of molecular mechanisms and potential biomarkers into this understanding further enhances the prognostic significance of intratumoral microbiota composition and therapeutic opportunities targeting microbiota-mediated tumor metabolism. Despite advancements, challenges remain in understanding the dynamic interactions within the tumor microenvironment (TME). Future research directions, including advanced omics technologies and prospective clinical studies, offer promising avenues for precision oncology and personalized treatment interventions in GI cancer. Overall, integrating microbiota-based approaches and molecular biomarkers into GI cancer management holds promise for improving patient outcomes and survival.
Collapse
Affiliation(s)
- Xueyuan Bi
- Department of Pharmacy, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Cuicui Liu
- Department of Science and Education, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| |
Collapse
|
3
|
Zuo Y, Lu Y, Pang J, Jin S, Zhang X, Zhao E, Li Y. Detection and comparison of tumor cell-associated microbiota from different compartments of colorectal cancer. Front Oncol 2024; 14:1374769. [PMID: 38835371 PMCID: PMC11148212 DOI: 10.3389/fonc.2024.1374769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Intratumoral microbes play an important role in the development of colorectal cancer (CRC). However, studying intratumoral microbes in CRC faces technical challenges, as tumor microbe communities are often contaminated by fecal microbes due to the structure of the gut folds and villi. The present study aimed to develop a new method for isolating tumor cell-associated microbiota and comparing microbial populations from different compartments. Materials and methods The distribution of intestinal bacteria was detected using immunohistochemistry combined with 5R-16s rRNA gene sequencing to explore the effects of the sampling site and number of washes on the detection of microbiota. The 5R-16s rRNA gene sequencing was performed using 44 samples from 11 patients with CRC, including CRC tumor tissues (TT), normal tissues adjacent to CRC (NT), tumor cells (TC), and normal cells (NC). TC and NC were obtained from the TT and NT using an enzymatic digestion method. The microbiota and their potential functions in the four groups were analyzed and compared to determine the differential microbiota related to CRC. Results Bacteria were mainly distributed in the feces covering intestinal tissues and in the epithelial cells and macrophages within the tissues. Different sampling sites and number of washes led to detection of different microbiota distributions. Although the cleaning method could be controlled, sampling sites varied and led to different microbiota distributions. The phyla of Firmicutes and Bacteroidetes were highly abundant in the conventionally used tissue samples, whereas Proteobacteria was the most abundant phyla in the cell samples isolated with the new method (i.e., after cell enzymatic hydrolysis). Detection of CRC cell-associated microbiota using a cell enzymatic digestion method showed that some bacteria, such as Fusobacterium, Eikenella, Shewanella, and Listeria, were more abundant in TT than NT, whereas the abundance of Akkermansia was lower in TT than NT. The tumor/normal ratios of some bacteria, such as Gemella, Escherichia, Shigella, and Blautia, were different between the cell and tissue samples. Conclusion The cell enzymatic digestion method reduced fecal bacterial contamination, enabling low biomass intratumoral microbiota to be detected and allowing prediction of bacterial distributions.
Collapse
Affiliation(s)
- Yanzhen Zuo
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei, China
| | - Yanjie Lu
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei, China
| | - Jiayu Pang
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei, China
| | - Shunkang Jin
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei, China
| | - Xinyu Zhang
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei, China
| | - Enhong Zhao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Yuhong Li
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei, China
| |
Collapse
|
4
|
Chen X, Wang G, Qin L, Hu B, Li J. Intestinal Microbiota Modulates the Antitumor Effect of Oncolytic Virus Vaccines in Colorectal Cancer. Dig Dis Sci 2024; 69:1228-1241. [PMID: 38400885 DOI: 10.1007/s10620-024-08346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/10/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Immunotherapies, such as oncolytic viruses, have become powerful cancer treatments, but only some patients with cancer can benefit from them, especially those with advanced-stage cancer, and new therapeutic strategies are needed to facilitate extended survival. The intestinal microbiota may contribute to colorectal cancer (CRC) carcinogenesis and the response to immunotherapy. However, whether and how the intestinal microbiota modulates the effects of oncolytic virus vaccines (OVVs) in CRC remain to be investigated. METHODS We generated an MC38-gp33 CRC mouse model and treated it with OVV-gp33 in early and advanced stages. Probiotics, fecal microbiota transplantation (FMT), and antibiotics (ABX) were administered to regulate the microbial composition of CRC mice at an advanced stage. The tumor growth rate and survival time of the mice were recorded; 16S rDNA sequencing was used to analyze the microbial composition and flow cytometry was used to detect T-cell subset activity. RESULTS OVV-gp33 treatment inhibited tumor growth and prolonged survival in the early stage of CRC but did not have a significant effect on the advanced stage of CRC. Moreover, 16S rDNA sequence analysis and flow cytometry showed significant differences in intestinal microbiota composition, microbial metabolites, and T-cell subsets in early and advanced-stage CRC. Probiotic and FMT treatment significantly enhanced the antitumor effect of OVV in the advanced stage of CRC with an increased abundance of activated CD8+ T cells and a decreased ratio of Treg cells, while depletion of the microbiota by ABX eliminated the antitumor activity of OVV with decreased CD8+ T-cell activation and upregulated Treg cells. CONCLUSIONS These results indicate that the intestinal microbiota and microbial metabolites play an important role in the antitumor effect of OVV in CRC. Furthermore, altering the intestinal microbiota composition can modulate the antitumor and immunomodulatory effects of OVV in CRC.
Collapse
Affiliation(s)
- Xia Chen
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Guanjun Wang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Ling Qin
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jun Li
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China.
| |
Collapse
|
5
|
Xuan M, Gu X, Liu Y, Yang L, Li Y, Huang D, Li J, Xue C. Intratumoral microorganisms in tumors of the digestive system. Cell Commun Signal 2024; 22:69. [PMID: 38273292 PMCID: PMC10811838 DOI: 10.1186/s12964-023-01425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Tumors of the digestive system pose a significant threat to human health and longevity. These tumors are associated with high morbidity and mortality rates, leading to a heavy economic burden on healthcare systems. Several intratumoral microorganisms are present in digestive system tumors, and their sources and abundance display significant heterogeneity depending on the specific tumor subtype. These microbes have a complex and precise function in the neoplasm. They can facilitate tumor growth through various mechanisms, such as inducing DNA damage, influencing the antitumor immune response, and promoting the degradation of chemotherapy drugs. Therefore, these microorganisms can be targeted to inhibit tumor progression for improving overall patient prognosis. This review focuses on the current research progress on microorganisms present in the digestive system tumors and how they influence the initiation, progression, and prognosis of tumors. Furthermore, the primary sources and constituents of tumor microbiome are delineated. Finally, we summarize the application potential of intratumoral microbes in the diagnosis, treatment, and prognosis prediction of digestive system tumors. Video Abstract.
Collapse
Affiliation(s)
- Mengjuan Xuan
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yingru Liu
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Li Yang
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Yi Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Juan Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China.
| | - Chen Xue
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China.
| |
Collapse
|
6
|
Wang M, Yu F, Li P. Intratumor microbiota in cancer pathogenesis and immunity: from mechanisms of action to therapeutic opportunities. Front Immunol 2023; 14:1269054. [PMID: 37868956 PMCID: PMC10587687 DOI: 10.3389/fimmu.2023.1269054] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Microbial species that dwell human bodies have profound effects on overall health and multiple pathological conditions. The tumor microenvironment (TME) is characterized by disordered vasculature, hypoxia, excessive nutrition and immunosuppression. Thus, it is a favorable niche for microbial survival and growth. Multiple lines of evidence support the existence of microorganisms within diverse types of cancers. Like gut microbiota, intratumoral microbes have been tightly associated with cancer pathogenesis. Intratumoral microbiota can affect cancer development through various mechanisms, including induction of host genetic mutation, remodeling of the immune landscape and regulation of cancer metabolism and oncogenic pathways. Tumor-associated microbes modulate the efficacy of anticancer therapies, suggesting their potential utility as novel targets for future intervention. In addition, a growing body of evidence has manifested the diagnostic, prognostic, and therapeutic potential of intratumoral microorganisms in cancer. Nevertheless, our knowledge of the diversity and biological function of intratumoral microbiota is still incomplete. A deeper appreciation of tumor microbiome will be crucial to delineate the key pathological mechanisms underlying cancer progression and hasten the development of personalized treatment approaches. Herein, we summarize the most recent progress of the research into the emerging roles of intratumoral microbiota in cancer and towards clarifying the sophisticated mechanisms involved. Moreover, we discuss the effect of intratumoral microbiota on cancer treatment response and highlight its potential clinical implications in cancer.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Jiang M, Yang Z, Dai J, Wu T, Jiao Z, Yu Y, Ning K, Chen W, Yang A. Intratumor microbiome: selective colonization in the tumor microenvironment and a vital regulator of tumor biology. MedComm (Beijing) 2023; 4:e376. [PMID: 37771912 PMCID: PMC10522974 DOI: 10.1002/mco2.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
The polymorphic microbiome has been proposed as a new hallmark of cancer. Intratumor microbiome has been revealed to play vital roles in regulating tumor initiation and progression, but the regulatory mechanisms have not been fully uncovered. In this review, we illustrated that similar to other components in the tumor microenvironment, the reside and composition of intratumor microbiome are regulated by tumor cells and the surrounding microenvironment. The intratumor hypoxic, immune suppressive, and highly permeable microenvironment may select certain microbiomes, and tumor cells may directly interact with microbiome via molecular binding or secretions. Conversely, the intratumor microbiomes plays vital roles in regulating tumor initiation and progression via regulating the mutational landscape, the function of genes in tumor cells and modulating the tumor microenvironment, including immunity, inflammation, angiogenesis, stem cell niche, etc. Moreover, intratumor microbiome is regulated by anti-cancer therapies and actively influences therapy response, which could be a therapeutic target or engineered to be a therapy weapon in the clinic. This review highlights the intratumor microbiome as a vital component in the tumor microenvironment, uncovers potential mutual regulatory mechanisms between the tumor microenvironment and intratumor microbiome, and points out the ongoing research directions and drawbacks of the research area, which should broaden our view of microbiome and enlighten further investigation directions.
Collapse
Affiliation(s)
- Mingjie Jiang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Zhongyuan Yang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Juanjuan Dai
- Department of Intensive Care UnitSun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Tong Wu
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Zan Jiao
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Yongchao Yu
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Kang Ning
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Weichao Chen
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Ankui Yang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| |
Collapse
|
8
|
Sambruni G, Macandog AD, Wirbel J, Cagnina D, Catozzi C, Dallavilla T, Borgo F, Fazio N, Fumagalli-Romario U, Petz WL, Manzo T, Ravenda SP, Zeller G, Nezi L, Schaefer MH. Location and condition based reconstruction of colon cancer microbiome from human RNA sequencing data. Genome Med 2023; 15:32. [PMID: 37131219 PMCID: PMC10155404 DOI: 10.1186/s13073-023-01180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND The association between microbes and cancer has been reported repeatedly; however, it is not clear if molecular tumour properties are connected to specific microbial colonisation patterns. This is due mainly to the current technical and analytical strategy limitations to characterise tumour-associated bacteria. METHODS Here, we propose an approach to detect bacterial signals in human RNA sequencing data and associate them with the clinical and molecular properties of the tumours. The method was tested on public datasets from The Cancer Genome Atlas, and its accuracy was assessed on a new cohort of colorectal cancer patients. RESULTS Our analysis shows that intratumoural microbiome composition is correlated with survival, anatomic location, microsatellite instability, consensus molecular subtype and immune cell infiltration in colon tumours. In particular, we find Faecalibacterium prausnitzii, Coprococcus comes, Bacteroides spp., Fusobacterium spp. and Clostridium spp. to be strongly associated with tumour properties. CONCLUSIONS We implemented an approach to concurrently analyse clinical and molecular properties of the tumour as well as the composition of the associated microbiome. Our results may improve patient stratification and pave the path for mechanistic studies on microbiota-tumour crosstalk.
Collapse
Affiliation(s)
- Gaia Sambruni
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Angeli D Macandog
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Jakob Wirbel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Danilo Cagnina
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Carlotta Catozzi
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Tiziano Dallavilla
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Francesca Borgo
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
- Center for Omics Sciences, IRCCS San Raffaele Institute, Milano, Italy
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology-IRCCS, Milano, Italy
| | | | - Wanda L Petz
- Digestive Surgery, European Institute of Oncology-IRCCS, Milano, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Simona P Ravenda
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology-IRCCS, Milano, Italy
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Luigi Nezi
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy.
| | - Martin H Schaefer
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy.
| |
Collapse
|
9
|
Wang Y, Gao X, Wang J. Functional Proteomic Profiling Analysis in Four Major Types of Gastrointestinal Cancers. Biomolecules 2023; 13:biom13040701. [PMID: 37189448 DOI: 10.3390/biom13040701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Gastrointestinal (GI) cancer accounts for one in four cancer cases and one in three cancer-related deaths globally. A deeper understanding of cancer development mechanisms can be applied to cancer medicine. Comprehensive sequencing applications have revealed the genomic landscapes of the common types of human cancer, and proteomics technology has identified protein targets and signalling pathways related to cancer growth and progression. This study aimed to explore the functional proteomic profiles of four major types of GI tract cancer based on The Cancer Proteome Atlas (TCPA). We provided an overview of functional proteomic heterogeneity by performing several approaches, including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), t-stochastic neighbour embedding (t-SNE) analysis, and hierarchical clustering analysis in oesophageal carcinoma (ESCA), stomach adenocarcinoma (STAD), colon adenocarcinoma (COAD), and rectum adenocarcinoma (READ) tumours, to gain a system-wide understanding of the four types of GI cancer. The feature selection approach, mutual information feature selection (MIFS) method, was conducted to screen candidate protein signature subsets to better distinguish different cancer types. The potential clinical implications of candidate proteins in terms of tumour progression and prognosis were also evaluated based on TCPA and The Cancer Genome Atlas (TCGA) databases. The results suggested that functional proteomic profiling can identify different patterns among the four types of GI cancers and provide candidate proteins for clinical diagnosis and prognosis evaluation. We also highlighted the application of feature selection approaches in high-dimensional biological data analysis. Overall, this study could improve the understanding of the complexity of cancer phenotypes and genotypes and thus be applied to cancer medicine.
Collapse
Affiliation(s)
- Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710129, China
| | - Xiaoguang Gao
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710129, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
10
|
Sheng D, Yue K, Li H, Zhao L, Zhao G, Jin C, Zhang L. The Interaction between Intratumoral Microbiome and Immunity Is Related to the Prognosis of Ovarian Cancer. Microbiol Spectr 2023; 11:e0354922. [PMID: 36975828 PMCID: PMC10100779 DOI: 10.1128/spectrum.03549-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Microbiota can influence the occurrence, development, and therapeutic response of a wide variety of cancer types by modulating immune responses to tumors. Recent studies have demonstrated the existence of intratumor bacteria inside ovarian cancer (OV). However, whether intratumor microbes are associated with tumor microenvironment (TME) and prognosis of OV still remains unknown. The RNA-sequencing data and clinical and survival data of 373 patients with OV in The Cancer Genome Atlas (TCGA) were collected and downloaded. According to the knowledge-based functional gene expression signatures (Fges), OV was classified into two subtypes, termed immune-enriched and immune-deficient subtypes. The immune-enriched subtype, which had higher immune infiltration enriched with CD8+ T cells and the M1 type of macrophages (M1) and higher tumor mutational burden, exhibited a better prognosis. Based on the Kraken2 pipeline, the microbiome profiles were explored and found to be significantly different between the two subtypes. A prediction model consisting of 32 microbial signatures was constructed using the Cox proportional-hazard model and showed great prognostic value for OV patients. The prognostic microbial signatures were strongly associated with the hosts' immune factors. Especially, M1 was strongly associated with five species (Achromobacter deleyi and Microcella alkaliphila, Devosia sp. strain LEGU1, Ancylobacter pratisalsi, and Acinetobacter seifertii). Cell experiments demonstrated that Acinetobacter seifertii can inhibit macrophage migration. Our study demonstrated that OV could be classified into immune-enriched and immune-deficient subtypes and that the intratumoral microbiota profiles were different between the two subtypes. Furthermore, the intratumoral microbiome was closely associated with the tumor immune microenvironment and OV prognosis. IMPORTANCE Recent studies have demonstrated the existence of intratumoral microorganisms. However, the role of intratumoral microbes in the development of ovarian cancer and their interaction with the tumor microenvironment are largely unknown. Our study demonstrated that OV could be classified into immune-enriched and -deficient subtypes and that the immune enrichment subtype had a better prognosis. Microbiome analysis showed that intratumor microbiota profiles were different between the two subtypes. Furthermore, the intratumor microbiome was an independent predictor of OV prognosis that could interact with immune gene expression. Especially, M1 was closely associated with intratumoral microbes, and Acinetobacter seifertii could inhibit macrophage migration. Together, the findings of our study highlight the important roles of intratumoral microbes in the TME and prognosis of OV, paving the way for further investigation into its underlying mechanisms.
Collapse
Affiliation(s)
- Dashuang Sheng
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kaile Yue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongfeng Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lanlan Zhao
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoping Zhao
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chuandi Jin
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
11
|
Basal Diet Fed to Recipient Mice Was the Driving Factor for Colitis and Colon Tumorigenesis, despite Fecal Microbiota Transfer from Mice with Severe or Mild Disease. Nutrients 2023; 15:nu15061338. [PMID: 36986068 PMCID: PMC10052649 DOI: 10.3390/nu15061338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Consumption of the total Western diet (TWD) in mice has been shown to increase gut inflammation, promote colon tumorigenesis, and alter fecal microbiome composition when compared to mice fed a healthy diet, i.e., AIN93G (AIN). However, it is unclear whether the gut microbiome contributes directly to colitis-associated CRC in this model. The objective of this study was to determine whether dynamic fecal microbiota transfer (FMT) from donor mice fed either the AIN basal diet or the TWD would alter colitis symptoms or colitis-associated CRC in recipient mice, which were fed either the AIN diet or the TWD, using a 2 × 2 factorial experiment design. Time-matched FMT from the donor mice fed the TWD did not significantly enhance symptoms of colitis, colon epithelial inflammation, mucosal injury, or colon tumor burden in the recipient mice fed the AIN diet. Conversely, FMT from the AIN-fed donors did not impart a protective effect on the recipient mice fed the TWD. Likewise, the composition of fecal microbiomes of the recipient mice was also affected to a much greater extent by the diet they consumed than by the source of FMT. In summary, FMT from the donor mice fed either basal diet with differing colitis or tumor outcomes did not shift colitis symptoms or colon tumorigenesis in the recipient mice, regardless of the basal diet they consumed. These observations suggest that the gut microbiome may not contribute directly to the development of disease in this animal model.
Collapse
|
12
|
Xie Y, Xie F, Zhou X, Zhang L, Yang B, Huang J, Wang F, Yan H, Zeng L, Zhang L, Zhou F. Microbiota in Tumors: From Understanding to Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200470. [PMID: 35603968 PMCID: PMC9313476 DOI: 10.1002/advs.202200470] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/30/2022] [Indexed: 05/09/2023]
Abstract
Microbes with complex functions have been found to be a potential component in tumor microenvironments. Due to their low biomass and other obstacles, intratumor microbiota is poorly understood. Mucosal sites and normal adjacent tissues are important sources of intratumor microbiota, while hematogenous spread also leads to the invasion of microbes. Intratumor microbiota affects the progression of tumors through several mechanisms, such as DNA damage, activation of oncogenic pathways, induction of immunosuppression, and metabolization of drugs. Notably, in different types of tumors, the composition and abundance of intratumor microbiota are highly heterogeneous and may play different roles in the progression of tumors. Because of the concern in this field, several techniques such as omics and immunological methods have been used to study intratumor microbiota. Here, recent progress in this field is reviewed, including the potential sources of intratumor microbiota, their functions and related mechanisms, and their heterogeneity. Techniques that can be used to study intratumor microbiota are also discussed. Moreover, research is summarized into the development of strategies that can be used in antitumor treatment and prospects for possible future research in this field.
Collapse
Affiliation(s)
- Yifan Xie
- School of MedicineZhejiang University City CollegeSuzhou215123P. R. China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Feng Xie
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Xiaoxue Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Lei Zhang
- Department of Orthopaedic Surgery WenzhouThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou32500P. R. China
| | - Bing Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Jun Huang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Fangwei Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Haiyan Yan
- School of MedicineZhejiang University City CollegeSuzhou215123P. R. China
| | - Linghui Zeng
- School of MedicineZhejiang University City CollegeSuzhou215123P. R. China
| | - Long Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
13
|
A comprehensive analysis of intratumor microbiome in head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2022; 279:4127-4136. [PMID: 35122129 DOI: 10.1007/s00405-022-07284-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE Human microbiome has been considered as the second genome of our body. The intratissue/intratumor microbiome analysis is a relatively new field and deserves more attention. In this study, we conducted a comprehensive analysis of microbiome signatures of head and neck squamous cell carcinoma (HNSC). METHODS The intratumor microbiome profiling and clinicopathological information about a total of 177 HNSC samples, including 155 tumors and 22 adjacent normal tissues, were obtained from The Cancer Microbiome Atlas (TCMA) and The Cancer Genome Atlas (TCGA) databases. We identified the microbes that differed between tumors and normal tissues, and assessed their utility values as diagnostic biomarkers. The microbiome signatures under different conditions of clinicopathological parameters were also analyzed. RESULTS The intratissue microbiome profiles differed between tumor and normal samples of HNSC. The composition of four, six, and six microbes changed in tumors compared to normal tissues at the phylum, order, and genus levels, respectively (P < 0.05). Eight of the differential microbes performed well in distinguishing tumors from normal tissues (AUC > 0.7, P ≤ 0.001). The microbiome signature was found to be associated with tumor clinicopathological characteristics such as host-gender, host-age, tumor stage, and neoplasm histologic grade. CONCLUSION Overall, our results revealed an intratissue microbiome signature of HNSC. We concluded that the intratumor microbiome signature may also reflect human biology in both healthy and disease status, and provide novel perspective for microbiota research about their roles in tumors.
Collapse
|
14
|
Zhao F, Li Z, Dong Z, Wang Z, Guo P, Zhang D, Li S. Exploring the Potential of Exosome-Related LncRNA Pairs as Predictors for Immune Microenvironment, Survival Outcome, and Microbiotain Landscape in Esophageal Squamous Cell Carcinoma. Front Immunol 2022; 13:918154. [PMID: 35880180 PMCID: PMC9307964 DOI: 10.3389/fimmu.2022.918154] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/16/2022] [Indexed: 12/16/2022] Open
Abstract
Accumulating studies have demonstrated the indispensable roles of exosomes and long non-coding RNAs (lncRNAs) in cancer progression and the tumor microenvironment (TME). However, the clinical relevance of exosome-related lncRNAs (ER-lncRNAs) in esophageal squamous cell carcinoma (ESCC) remains unclear. Three subtypes were identified by consensus clustering of 3459 valid ER-lncRNA pairs, of which subtype A is preferentially related to favorable prognosis, lower stromal and immune scores, and higher tumor purity scores. Higher immune cell infiltration, higher mRNA levels of immune checkpoints, higher stromal and immune scores, and lower tumor purity were found in subtype C, which presented a poor prognosis. We developed a prognostic risk score model based on 8 ER-lncRNA pairs in the GEO cohort using univariate Cox regression analysis and LASSO Cox regression analysis. Patients were divided into a high risk-score group and low risk-score group by the cut-off values of the 1-year ROC curves in the training set (GEO cohort) and the validation set (TCGA cohort). Receiver operating characteristic (ROC) curves, Decision curve analysis (DCA), clinical correlation analysis, and univariate and multivariate Cox regression all confirmed that the prognostic model has good predictive power and that the risk score can be used as an independent prognostic factor in different cohorts. By further analyzing the TME based on the risk model, higher immune cell infiltration and more active TME were found in the high-risk group, which presented a poor prognosis. Patients with high risk scores also exhibited higher mRNA levels of immune checkpoints and lower IC50 values, indicating that these patients may be more prone to profit from chemotherapy and immunotherapy. The top five most abundant microbial phyla in ESCC was also identified. The best ER-lncRNAs (AC082651.3, AP000487.1, PLA2G4E-AS1, C8orf49 and AL356056.2) were identified based on machine learning algorithms. Subsequently, the expression levels of the above ER-lncRNAs were analyzed by combining the GTEx and TCGA databases. In addition, qRT-PCR analysis based on clinical samples from our hospital showed a high degree of consistency. This study fills the gap of ER-lncRNA model in predicting the prognosis of patients with ESCC and the risk score-based risk stratification could facilitate the determination of therapeutic option to improve prognoses.
Collapse
Affiliation(s)
- Fangchao Zhao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- School of Clinical Medicine of Hebei Medical University, Shijiazhuang, China
| | - Zhirong Li
- Clinical Laboratory Center, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zefang Dong
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- School of Clinical Medicine of Hebei Medical University, Shijiazhuang, China
| | - Zengying Wang
- School of Clinical Medicine of Hebei Medical University, Shijiazhuang, China
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Pengfei Guo
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- School of Clinical Medicine of Hebei Medical University, Shijiazhuang, China
| | - Dengfeng Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- School of Clinical Medicine of Hebei Medical University, Shijiazhuang, China
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Shujun Li, ; orcid.org/0000-0001-5959-3160
| |
Collapse
|
15
|
Wang Y, Guo H, Gao X, Wang J. The Intratumor Microbiota Signatures Associate With Subtype, Tumor Stage, and Survival Status of Esophageal Carcinoma. Front Oncol 2021; 11:754788. [PMID: 34778069 PMCID: PMC8578860 DOI: 10.3389/fonc.2021.754788] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
Altered human microbiome characteristic has been linked with esophageal carcinoma (ESCA), analysis of microbial profiling directly derived from ESCA tumor tissue is beneficial for studying the microbial functions in tumorigenesis and development of ESCA. In this study, we identified the intratumor microbiome signature and investigated the correlation between microbes and clinical characteristics of patients with ESCA, on the basis of data and information obtained from The Cancer Microbiome Atlas (TCMA) and The Cancer Genome Atlas (TCGA) databases. A total of 82 samples were analyzed for microbial composition at various taxonomic levels, including 40 tumor samples of esophageal squamous cell carcinoma (ESCC), 20 tumor samples of esophageal adenocarcinoma (EAD), and 22 adjacent normal samples. The results showed that the relative abundance of several microbes changed in tumors compared to their paired normal tissues, such as Firmicutes increased significantly while Proteobacteria decreased in tumor samples. We also identified a microbial signature composed of ten microbes that may help in the classification of ESCC and EAD, the two subtypes of ESCA. Correlation analysis demonstrated that compositions of microbes Fusobacteria/Fusobacteriia/Fusobacteriales, Lactobacillales/Lactobacillaceae/Lactobacillus, Clostridia/Clostridiales, Proteobacteria, and Negativicutes were correlated with the clinical characteristics of ESCA patients. In summary, this study supports the feasibility of detecting intratumor microbial composition derived from tumor sequencing data, and it provides novel insights into the roles of microbiota in tumors. Ultimately, as the second genome of human body, microbiome signature analysis may help to add more information to the blueprint of human biology.
Collapse
Affiliation(s)
- Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
| | - Hua Guo
- Department of Nursing, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoguang Gao
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|