1
|
Kim YJ, Kwag D, Kim BR, Son H, Park S, Kim HJ, Cho BS. Characterization of the Bone Marrow Lymphoid Microenvironment and Discovery of Prognostic Immune-Related Factors in Acute Myeloid Leukemia. Int J Mol Sci 2024; 25:13039. [PMID: 39684749 DOI: 10.3390/ijms252313039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Given the limited comprehensive data on the bone marrow (BM) immune environment in acute myeloid leukemia (AML), we analyzed the distribution and phenotype of T cell subsets, including γδ T cells, and their immune checkpoint (IC) ligands on blasts. We performed multiparametric flow cytometry with BM samples taken from 89 AML patients at the time of diagnosis, remission, and relapse/refractory status after chemotherapy and 13 healthy controls (HCs) to identify immune-related risk factors. Compared to the HCs, the T cells of the AML patients exhibited exhausted features including higher TIGIT levels and similar levels of PD-1 and TIM-3. The γδ T cells were exhausted by the upregulation of TIGIT and/or TIM-3 and downregulation of NKG2D and NKp30, with different patterns in the Vδ1 and Vδ2 subtypes. A successful chemotherapeutic response partially restored the exhausted phenotypes of the T cell subsets. The simultaneous analysis of IC receptors on the T cell subsets and their ligands on blasts showed the prognostic value of a specific IC receptor-ligand pair and the feasibility of risk stratification based on their diverse patterns. Our findings clarified the BM T cell landscape in AML, unveiling the prognostic value of γδ T cells in both diagnosis and remission predictions.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/diagnosis
- Male
- Female
- Middle Aged
- Adult
- Bone Marrow/pathology
- Bone Marrow/metabolism
- Bone Marrow/immunology
- Aged
- Prognosis
- Tumor Microenvironment/immunology
- Hepatitis A Virus Cellular Receptor 2/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Young Adult
- Adolescent
- Aged, 80 and over
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
Collapse
Affiliation(s)
- Yoon-Ju Kim
- Department of Biomedicine & Health Sciences, Graduate Program for Future Medical Research Leaders, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Daehun Kwag
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Bo-Reum Kim
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyunsong Son
- Department of Biomedicine & Health Sciences, Graduate Program for Future Medical Research Leaders, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Silvia Park
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Byung-Sik Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
2
|
Colonne CK, Kimble EL, Turtle CJ. Evolving strategies to overcome barriers in CAR-T cell therapy for acute myeloid leukemia. Expert Rev Hematol 2024; 17:797-818. [PMID: 39439295 DOI: 10.1080/17474086.2024.2420614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a complex and heterogeneous disease characterized by an aggressive clinical course and limited efficacious treatment options in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR)-modified T (CAR-T) cell immunotherapy is an investigational treatment strategy for R/R AML that has shown some promise. However, obstacles to successful CAR-T cell immunotherapy for AML remain. AREAS COVERED In analyses of clinical trials of CAR-T cell therapy for R/R AML, complete responses without measurable residual disease have been reported, but the durability of those responses remains unclear. Significant barriers to successful CAR-T cell therapy in AML include the scarcity of suitable tumor-target antigens (TTA), inherent T cell functional deficits, and the immunoinhibitory and hostile tumor microenvironment (TME). This review will focus on these barriers to successful CAR-T cell therapy in AML, and discuss scientific advancements and evolving strategies to overcome them. EXPERT OPINION Achieving durable remissions in R/R AML will likely require a multifaceted approach that integrates advancements in TTA selection, enhancement of the intrinsic quality of CAR-T cells, and development of strategies to overcome inhibitory mechanisms in the AML TME.
Collapse
Affiliation(s)
- Chanukya K Colonne
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erik L Kimble
- Translational Science and Therapeutic Division, Fred Hutchinson Cancer Center, Seattle, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, USA
| | - Cameron J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
3
|
Liu L, Lai W, Zhuo X, Chen S, Luo X, Tan H. Higher frequency of peripheral blood CD103 +CD8 + T cells with lower levels of PD-1 and TIGIT expression related to favorable outcomes in leukemia patients. Front Immunol 2024; 15:1437726. [PMID: 39391310 PMCID: PMC11465237 DOI: 10.3389/fimmu.2024.1437726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Background Leukemia is a prevalent pediatric life-threatening hematologic malignancy with a poor prognosis. Targeting immune checkpoints (ICs) to reverse T cell exhaustion is a potentially effective treatment for leukemia. Tissue resident memory T (TRM) cells have been found to predict the efficacy of programmed death receptor-1 inhibitor (anti-PD-1) therapy in solid tumors. However, the IC characteristics of TRM cells in leukemia and their relationship with prognosis remain unclear. Methods We employed multi-color flow cytometry to evaluate the frequencies of CD103+CD4+ and CD103+CD8+ T cells in the peripheral blood (PB) of patients with acute myeloid leukemia and B-cell acute lymphoblastic leukemia compared to healthy individuals. We examined the expression patterns of PD-1 and T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) within the circulating CD103+ T cell subsets affected by leukemia. To further elucidate the immunological landscape, we assessed the differentiation status of CD103+ T cells across various disease states in patients with leukemia. Results Our findings showed a significant increase in the frequency of CD103+CD8+ T cells in the PB of patients with leukemia who had achieved complete remission (CR) compared to those in the de novo (DN) and relapsed/refractory (RR) stages. This increase was accompanied by a notable decrease in the expression levels of PD-1 and TIGIT in CD103+CD8+ T cells in the CR stage. Additionally, our analysis revealed a higher proportion of CD103+CD8+ T cells in the central memory (TCM) and effector memory (TEM) subsets of the immune profile. Notably, the proportions of CD103+ naïve T cells, CD103+ TEM, and CD103+ terminally differentiated T cells within the CD8+ T cell population were significantly elevated in patients with CR compared to those in the DN/RR stages. Conclusion The data indicate that circulating higher frequency of CD103+CD8+ T cells with lower expression of PD-1 and TIGIT are associated with favorable outcomes in patients with leukemia. This suggests a potential role of TRM cells in leukemia prognosis and provides a foundation for developing targeted immunotherapies.
Collapse
Affiliation(s)
- Lian Liu
- Guangzhou Medical University, Guangzhou, China
- Department of Hematology, Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenpu Lai
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
- Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaoling Zhuo
- Flow Morphology Group, Special Testing Technology Center, Guangzhou Huayin Medical Testing Center Special Testing Technology Center, Guangzhou, China
| | - Sihui Chen
- Guangzhou Medical University, Guangzhou, China
- Department of Hematology, Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaodan Luo
- Guangzhou Medical University, Guangzhou, China
- Department of Hematology, Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huo Tan
- Guangzhou Medical University, Guangzhou, China
- Department of Hematology, Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Hou Q, Wang P, Kong X, Chen J, Yao C, Luo X, Li Y, Jin Z, Wu X. Higher TIGIT+ γδ T CM cells may predict poor prognosis in younger adult patients with non-acute promyelocytic AML. Front Immunol 2024; 15:1321126. [PMID: 38711501 PMCID: PMC11070478 DOI: 10.3389/fimmu.2024.1321126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction γδ T cells recognize and exert cytotoxicity against tumor cells. They are also considered potential immune cells for immunotherapy. Our previous study revealed that the altered expression of immune checkpoint T-cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) on γδ T cells may result in immunosuppression and is possibly associated with a poor overall survival in acute myeloid leukemia (AML). However, whether γδ T-cell memory subsets are predominantly involved and whether they have a relationship with clinical outcomes in patients with AML under the age of 65 remain unclear. Methods In this study, we developed a multicolor flow cytometry-based assay to monitor the frequency and distribution of γδ T-cell subsets, including central memory γδ T cells (TCM γδ), effector memory γδ T cells (TEM γδ), and TEM expressing CD45RA (TEMRA γδ), in peripheral blood from 30 young (≤65 years old) patients with newly diagnosed non-acute promyelocytic leukemia (also known as M3) AML (AMLy-DN), 14 young patients with AML in complete remission (AMLy-CR), and 30 healthy individuals (HIs). Results Compared with HIs, patients with AMLy-DN exhibited a significantly higher differentiation of γδ T cells, which was characterized by decreased TCM γδ cells and increased TEMRA γδ cells. A generally higher TIGIT expression was observed in γδ T cells and relative subsets in patients with AMLy-DN, which was partially recovered in patients with AMLy-CR. Furthermore, 17 paired bone marrow from patients with AMLy-DN contained higher percentages of γδ and TIGIT+ γδ T cells and a lower percentage of TCM γδ T cells. Multivariate logistic regression analyses revealed the association of high percentage of TIGIT+ TCM γδ T cells with an increased risk of poor induction chemotherapy response. Conclusions In this study, we investigated the distribution of γδ T cells and their memory subsets in patients with non-M3 AML and suggested TIGIT+ TCM γδ T cells as potential predictive markers of induction chemotherapy response.
Collapse
MESH Headings
- Humans
- Receptors, Immunologic/metabolism
- Male
- Female
- Adult
- Middle Aged
- Prognosis
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Young Adult
- Aged
- Memory T Cells/immunology
- Memory T Cells/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/diagnosis
- Immunologic Memory
- Leukemia, Promyelocytic, Acute/immunology
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/mortality
- Immunophenotyping
Collapse
Affiliation(s)
- Qi Hou
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
| | - Penglin Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Xueting Kong
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Junjie Chen
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
| | - Chao Yao
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaodan Luo
- Department of Hematology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Zhenyi Jin
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiuli Wu
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| |
Collapse
|
5
|
Sun K, Wang J, Wang YZ, Shi ZY, Chang Y, Yuan XY, Liu YR, Jiang H, Jiang Q, Huang XJ, Qin YZ. Prognostic significance of the frequencies of bone marrow lymphocyte subsets in adult acute myeloid leukemia at diagnosis. Int J Lab Hematol 2024; 46:294-302. [PMID: 38069563 DOI: 10.1111/ijlh.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/24/2023] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Immune microenvironment plays an important role in the occurrence and development of acute myeloid leukemia (AML). Studies assessing the prognostic significance of bone marrow (BM) lymphocyte subsets' frequencies at diagnosis in patients with AML were limited. METHODS Fresh BM samples collected from 97 adult AML patients at diagnosis were tested for lymphocyte, T, CD4+ T, CD8+ T, γδT, NK, and B cell frequencies using multi-parameter flow cytometry. RESULTS Low frequencies of lymphocytes, T, CD4+ T, and CD8+ T cells were associated with significantly lower rates of one-course complete remission (CR) (all p < 0.05). Moreover, the frequency of CD4+ T cells independently predicted one-course CR achievement (p = 0.021). Low frequencies of T and CD8+ T cells were significantly associated with lower relapse-free survival (RFS) rates (p = 0.032; 0.034), respectively, and a low frequency of CD8+ T cells was associated with a significantly lower overall survival (OS) rate (p = 0.028). Combination of frequency of CD8+ T cells and ELN risk stratification showed that patients with ELN-intermediate/adverse risk + high CD8+ T cell frequency had a similar RFS rate to those with ELN-favorable risk + high CD8+ T cell frequency and those with ELN-favorable risk + low CD8+ T cell frequency (p = 0.88; 0.76), respectively. The RFS rate of patients with ELN intermediate/adverse risk + low CD8+ T cell frequency was significantly lower than that of all aforementioned patients (p = 0.021; 0.0007; 0.028), respectively. CONCLUSION The frequencies of BM lymphocyte subsets at diagnosis predicted clinical outcomes and could help improve risk stratification in AML.
Collapse
Affiliation(s)
- Kai Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Jun Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Ya-Zhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Zong-Yan Shi
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Yan Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Xiao-Ying Yuan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Yan-Rong Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| |
Collapse
|
6
|
Zhong F, Yao F, Jiang J, Yu X, Liu J, Huang B, Wang X. CD8 + T cell-based molecular subtypes with heterogeneous immune landscapes and clinical significance in acute myeloid leukemia. Inflamm Res 2024; 73:329-344. [PMID: 38195768 DOI: 10.1007/s00011-023-01839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy. Although high-dose chemotherapy is the primary treatment option, it cannot cure the disease, and new approaches need to be developed. The tumor microenvironment (TME) plays a crucial role in tumor biology and immunotherapy. CD8 + T cells are the main anti-tumor immune effector cells, and it is essential to understand their relationship with the TME and the clinicopathological characteristics of AML. METHODS In this study, we conducted a systematic analysis of CD8 + T cell infiltration through multi-omics data and identified molecular subtypes with significant differences in CD8 + T cell infiltration and prognosis. We aimed to provide a comprehensive evaluation of the pathological factors affecting the prognosis of AML patients and to offer theoretical support for the precise treatment of AML. RESULTS Our results indicate that CD8 + T cell infiltration is accompanied by immunosuppression, and that there are two molecular subtypes, with the C2 subtype having a significantly worse prognosis than the C1 subtype, as well as less CD8 + T cell infiltration. We developed a signature to distinguish molecular subtypes using multiple machine learning algorithms and validated the prognostic predictive power of molecular subtypes in nine AML cohorts including 2059 AML patients. Our findings suggest that there are different immunosuppressive characteristics between the two subtypes. The C1 subtype has up-regulated expression of immune checkpoints such as CTLA4, PD-1, LAG3, and TIGITD, while the C2 subtype infiltrates more immunosuppressive cells such as Tregs and M2 macrophages. The C1 subtype is more responsive to anti-PD-1 immunotherapy and induction chemotherapy, as well as having higher immune and cancer-promoting variant-related pathway activity. Patients with the C2 subtype had a higher FLT3 mutation rate, higher WBC counts, and a higher percentage of blasts, as indicated by increased activity of signaling pathways involved in energy metabolism and cell proliferation. Analysis of data from ex vivo AML cell drug assays has identified a group of drugs that differ in therapeutic sensitivity between molecular subtypes. CONCLUSIONS Our results suggest that the molecular subtypes we constructed have potential application value in the prognosis evaluation and treatment guidance of AML patients.
Collapse
Affiliation(s)
- Fangmin Zhong
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fangyi Yao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Junyao Jiang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiajing Yu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
7
|
Zhang P, Liu X, Gu Z, Jiang Z, Zhao S, Song Y, Yu J. Targeting TIGIT for cancer immunotherapy: recent advances and future directions. Biomark Res 2024; 12:7. [PMID: 38229100 PMCID: PMC10790541 DOI: 10.1186/s40364-023-00543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/08/2023] [Indexed: 01/18/2024] Open
Abstract
As a newly identified checkpoint, T cell immunoreceptor with immunoglobulin and tyrosine-based inhibitory motif (ITIM) domain (TIGIT) is highly expressed on CD4+ T cells, CD8+ T cells, natural killer (NK) cells, regulatory T cells (Tregs), and tumor-infiltrating lymphocytes (TILs). TIGIT has been associated with NK cell exhaustion in vivo and in individuals with various cancers. It not only modulates NK cell survival but also mediates T cell exhaustion. As the primary ligand of TIGIT in humans, CD155 may be the main target for immunotherapy due to its interaction with TIGIT. It has been found that the anti-programmed cell death protein 1 (PD-1) treatment response in cancer immunotherapy is correlated with CD155 but not TIGIT. Anti-TIGIT alone and in combination with anti-PD-1 agents have been tested for cancer immunotherapy. Although two clinical studies on advanced lung cancer had positive results, the TIGIT-targeted antibody, tiragolumab, recently failed in two new trials. In this review, we highlight the current developments on TIGIT for cancer immunotherapy and discuss the characteristics and functions of TIGIT.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Thoracic Oncology, Zhengzhou, 450052, Henan, China
| | - Xinyuan Liu
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Zhuoyu Gu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Thoracic Oncology, Zhengzhou, 450052, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yongping Song
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China.
| |
Collapse
|
8
|
Bergantini L, Pianigiani T, d'Alessandro M, Gangi S, Cekorja B, Bargagli E, Cameli P. The effect of anti-IL5 monoclonal antibodies on regulatory and effector T cells in severe eosinophilic asthma. Biomed Pharmacother 2023; 166:115385. [PMID: 37651801 DOI: 10.1016/j.biopha.2023.115385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
INTRODUCTION Biological treatments have redesigned the clinical management of severe eosinophilic asthmatic (SA) patients. Despite emerging evidence supporting the role of natural Killer (NK), and T regulatory cells (Treg) in the pathogenesis of asthma, no data is available on the effects of anti-IL5/IL5R therapies on these cell subsets. METHODS We prospectively enrolled fourteen SA patients treated with benralizumab (n = 7) or mepolizumab (n = 7) and compared them with healthy controls (HC) (n = 11) and mild to moderate asthmatic (MM) patients (n = 9). Clinical parameters were collected at baseline (T0) and during follow-up. Cellular analysis, including the analysis of T/NK cell subsets, was determined through multicolor flow cytometry. RESULTS At T0, SA patients showed higher percentages of CD4 TEM (33.3 ± 17.9 HC, 42.6 ± 16.6 MM and 66.1 ± 19.7 in SA; p < 0.0001) than HC and MM patients. With different timing, the two drugs induce a reduction of CD4 TEM ( 76 ± 19 T0; 43 ± 14 T1; 45 ± 23 T6; 62 ± 18 at T24; p < 0.0001 for mepolizumab and 55 ± 21 T0; 55 ± 22 T1; 43 ± 14 T6; 27 ± 12 at T24; p < 0.0001 for benralizumab) and an increase of Treg cells (1.2 ± 1.3 T0; 5.1 ± 2.5 T1; 6.3 ± 3.4 T6; 8.4 ± 4.6 at T24; p < 0.0001 for mepolizumab and 3.4 ± 1.7 T0; 1.9 ± 0.8 T1; 1.9 ± 1 T6; 5.1 ± 2.4 at T24; p < 0.0001 for benralizumab). The change of CD56dim PD-1+ significantly correlated with FEV1% (r = - 0.32; p < 0.01), while Treg expressing PD-1 correlates with the use of oral steroids ( r = 0.36 p = 0.0008) and ACT score (r = 0.36 p = 0.0008) p < 0.001) CONCLUSIONS: Beyond the clinical improvement, anti-IL-5 treatment induces a rebalancing of Treg and T effector cells in patients with SA.
Collapse
Affiliation(s)
- Laura Bergantini
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliero Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy.
| | - Tommaso Pianigiani
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliero Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| | - Miriana d'Alessandro
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliero Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| | - Sara Gangi
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliero Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| | - Behar Cekorja
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliero Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| | - Elena Bargagli
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliero Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| | - Paolo Cameli
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliero Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| |
Collapse
|
9
|
Zhang Z, Deng C, Zhu P, Yao D, Shi J, Zeng T, Huang W, Huang Z, Wu Z, Li J, Xiao M, Fu L. Single-cell RNA-seq reveals a microenvironment and an exhaustion state of T/NK cells in acute myeloid leukemia. Cancer Sci 2023; 114:3873-3883. [PMID: 37591615 PMCID: PMC10551605 DOI: 10.1111/cas.15932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous blood cancer. Effective immunotherapies for AML are hindered by a lack of understanding of the tumor microenvironment (TME). Here, we retrieved published single-cell RNA sequencing data for 128,688 cells derived from 29 bone marrow aspirates, including 21 AML patients and eight healthy donors. We established a global tumor ecosystem including nine main cell types. Myeloid, T, and NK cells were further re-clustered and annotated. Developmental trajectory analysis indicated that exhausted CD8+ T cells might develop via tissue residual memory T cells (TRM) in the AML TME. Significantly higher expression levels of exhaustion molecules in AML TRM cells suggested that these cells were influenced by the TME and entered an exhausted state. Meanwhile, the upregulation of checkpoint molecules and downregulation of granzyme were also observed in AML NK cells, suggesting an exhaustion state. In conclusion, our comprehensive profiling of T/NK subpopulations provides deeper insights into the AML immunosuppressive ecosystem, which is critical for immunotherapies.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General HospitalBeijingPeople's Republic of China
| | - Cong Deng
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Pei Zhu
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Danlin Yao
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Jinlong Shi
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General HospitalBeijingPeople's Republic of China
| | - Tiansheng Zeng
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Wenhui Huang
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Zeyong Huang
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Zhihua Wu
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Junyi Li
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Min Xiao
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Lin Fu
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
10
|
Cao H, Wu T, Zhou X, Xie S, Sun H, Sun Y, Li Y. Progress of research on PD-1/PD-L1 in leukemia. Front Immunol 2023; 14:1265299. [PMID: 37822924 PMCID: PMC10562551 DOI: 10.3389/fimmu.2023.1265299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Leukemia cells prevent immune system from clearing tumor cells by inducing the immunosuppression of the bone marrow (BM) microenvironment. In recent years, further understanding of the BM microenvironment and immune landscape of leukemia has resulted in the introduction of several immunotherapies, including checkpoint inhibitors, T-cell engager, antibody drug conjugates, and cellular therapies in clinical trials. Among them, the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis is a significant checkpoint for controlling immune responses, the PD-1 receptor on tumor-infiltrating T cells is bound by PD-L1 on leukemia cells. Consequently, the activation of tumor reactive T cells is inhibited and their apoptosis is promoted, preventing the rejection of the tumor by immune system and thus resulting in the occurrence of immune tolerance. The PD-1/PD-L1 axis serves as a significant mechanism by which tumor cells evade immune surveillance, and PD-1/PD-L1 checkpoint inhibitors have been approved for the treatment of lymphomas and varieties of solid tumors. However, the development of drugs targeting PD-1/PD-L1 in leukemia remains in the clinical-trial stage. In this review, we tally up the basic research and clinical trials on PD-1/PD-L1 inhibitors in leukemia, as well as discuss the relevant toxicity and impacts of PD-1/PD-L1 on other immunotherapies such as hematopoietic stem cell transplantation, bi-specific T-cell engager, chimeric antigen receptor T-cell immunotherapy.
Collapse
Affiliation(s)
- Huizhen Cao
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Tianyu Wu
- Department of Gastrointestinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xue Zhou
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shuyang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Hongfang Sun
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Yunxiao Sun
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| |
Collapse
|
11
|
Cai L, Li Y, Tan J, Xu L, Li Y. Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy. J Hematol Oncol 2023; 16:101. [PMID: 37670328 PMCID: PMC10478462 DOI: 10.1186/s13045-023-01499-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
In one decade, immunotherapy based on immune checkpoint blockades (ICBs) has become a new pillar of cancer treatment following surgery, radiation, chemotherapy, and targeted therapies. However, not all cancer patients benefit from single or combination therapy with anti-CTLA-4 and anti-PD-1/PD-L1 monoclonal antibodies. Thus, an increasing number of immune checkpoint proteins (ICPs) have been screened and their effectiveness evaluated in preclinical and clinical trials. Lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin-domain-containing-3 (TIM-3), and T cell immunoreceptor with immunoglobulin and tyrosine-based inhibitory motif (ITIM) domain (TIGIT) constitute the second wave of immunotherapy targets that show great promise for use in the treatment of solid tumors and leukemia. To promote the research and clinical application of ICBs directed at these targets, we summarize their discovery, immunotherapy mechanism, preclinical efficiency, and clinical trial results in this review.
Collapse
Affiliation(s)
- Letong Cai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yuchen Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiaxiong Tan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| |
Collapse
|
12
|
Meyiah A, Mahmoodi Chalbatani G, Al-Mterin MA, Malekraeisi MA, Murshed K, Elkord E. Co-expression of PD-1 with TIGIT or PD-1 with TIM-3 on tumor-infiltrating CD8 + T cells showed synergistic effects on improved disease-free survival in treatment-naïve CRC patients. Int Immunopharmacol 2023; 119:110207. [PMID: 37099940 DOI: 10.1016/j.intimp.2023.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Immune checkpoints (ICs) are highly expressed on tumor-infiltrating immune cells (TIICs) in different malignancies, including colorectal cancer (CRC). T cells play crucial roles in shaping CRC, and their presence in the tumor microenvironment (TME) has proven to be one of the best predictors of clinical outcomes. A crucial component of the immune system is cytotoxic CD8+ T cells (CTLs), which play decisive roles in the prognosis of CRC. In this study, we investigated associations of immune checkpoints expressed on tumor-infiltrating CD8+ T cells with disease-free survival (DFS) in 45 naïve-treatment CRC patients. First, we examined the associations of single ICs, and found that CRC patients with higher levels of T-cell immunoglobulin and ITIM-domain (TIGIT), T-cell immunoglobulin and mucin domain-3 (TIM-3) and programmed cell death-1 (PD-1) CD8+ T cells tended to have longer DFS. Interestingly, when PD-1 expression was combined with other ICs, there were more evident and stronger associations between higher levels of PD-1+ with TIGIT+ or PD-1+ with TIM-3+ tumor-infiltrating CD8+ T cells and longer DFS. Our findings for TIGIT were validated in The Cancer Genome Atlas (TCGA) CRC dataset. This study is the first to report on the association of co-expression of PD-1 with TIGIT and PD-1 with TIM-3 in CD8+ T cells and improved DFS in treatment-naïve CRC patients. This work highlights the significance of immune checkpoint expression on tumor-infiltrating CD8+ T cells as critical predictive biomarkers, especially when co-expression of different ICs is considered.
Collapse
Affiliation(s)
- Abdo Meyiah
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | | | - Mohamed A Al-Mterin
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | | | - Khaled Murshed
- Department of Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Eyad Elkord
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; Department of Biological Sciences and Chemistry, Faculty of Arts and Sciences, University of Nizwa, Nizwa 616, Oman; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
13
|
Aru B, Pehlivanoğlu C, Dal Z, Dereli-Çalışkan NN, Gürlü E, Yanıkkaya-Demirel G. A potential area of use for immune checkpoint inhibitors: Targeting bone marrow microenvironment in acute myeloid leukemia. Front Immunol 2023; 14:1108200. [PMID: 36742324 PMCID: PMC9895857 DOI: 10.3389/fimmu.2023.1108200] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Acute myeloid leukemia (AML) arises from the cells of myeloid lineage and is the most frequent leukemia type in adulthood accounting for about 80% of all cases. The most common treatment strategy for the treatment of AML includes chemotherapy, in rare cases radiotherapy and stem cell and bone marrow transplantation are considered. Immune checkpoint proteins involve in the negative regulation of immune cells, leading to an escape from immune surveillance, in turn, causing failure of tumor cell elimination. Immune checkpoint inhibitors (ICIs) target the negative regulation of the immune cells and support the immune system in terms of anti-tumor immunity. Bone marrow microenvironment (BMM) bears various blood cell lineages and the interactions between these lineages and the noncellular components of BMM are considered important for AML development and progression. Administration of ICIs for the AML treatment may be a promising option by regulating BMM. In this review, we summarize the current treatment options in AML treatment and discuss the possible application of ICIs in AML treatment from the perspective of the regulation of BMM.
Collapse
Affiliation(s)
- Başak Aru
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Cemil Pehlivanoğlu
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Zeynep Dal
- School of Medicine, Yeditepe University, Istanbul, Türkiye
| | | | - Ege Gürlü
- School of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Gülderen Yanıkkaya-Demirel
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye,*Correspondence: Gülderen Yanıkkaya-Demirel,
| |
Collapse
|
14
|
Chen Y, Wang J, Zhang F, Liu P. A perspective of immunotherapy for acute myeloid leukemia: Current advances and challenges. Front Pharmacol 2023; 14:1151032. [PMID: 37153761 PMCID: PMC10154606 DOI: 10.3389/fphar.2023.1151032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023] Open
Abstract
During the last decade, the underlying pathogenic mechanisms of acute myeloid leukemia (AML) have been the subject of extensive study which has considerably increased our understanding of the disease. However, both resistance to chemotherapy and disease relapse remain the principal obstacles to successful treatment. Because of acute and chronic undesirable effects frequently associated with conventional cytotoxic chemotherapy, consolidation chemotherapy is not feasible, especially for elderly patients, which has attracted a growing body of research to attempt to tackle this problem. Immunotherapies for acute myeloid leukemia, including immune checkpoint inhibitors, monoclonal antibodies, dendritic cell (DC) vaccines, together with T-cell therapy based on engineered antigen receptor have been developed recently. Our review presents the recent progress in immunotherapy for the treatment of AML and discusses effective therapies that have the most potential and major challenges.
Collapse
Affiliation(s)
- Ying Chen
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
- *Correspondence: Jishi Wang,
| | - Fengqi Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Ping Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| |
Collapse
|
15
|
Zheng J, Qiu D, Jiang X, Zhao Y, Zhao H, Wu X, Chen J, Lai J, Zhang W, Li X, Li Y, Wu X, Jin Z. Increased PD-1 +Foxp3 + γδ T cells associate with poor overall survival for patients with acute myeloid leukemia. Front Oncol 2022; 12:1007565. [PMID: 36591503 PMCID: PMC9799959 DOI: 10.3389/fonc.2022.1007565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Problems γδ T cells are essential for anti-leukemia function in immunotherapy, however, γδ T cells have different functional subsets, including regulatory cell subsets expressing the Foxp3. Whether they are correlated with immune-checkpoint mediated T cell immune dysfunction remains unknown in patients with acute myeloid leukemia (AML). Methods In this study, we used RNA-seq data from 167 patients in TCGA dataset to analyze the correlation between PD-1 and FOXP3 genes and these two genes' association with the prognosis of AML patients. The expression proportion of Foxp3+/PD-1+ cells in γδ T cells and two subgroups Vδ1 and Vδ2 T cells were performed by flow cytometry. The expression level of FOXP3 and PD-1 genes in γδ T cells were sorted from peripheral blood by MACS magnetic cell sorting technique were analyzed by quantitative real-time PCR. Results We found that PD-1 gene was positively correlated with FOXP3 gene and highly co-expressed PD-1 and FOXP3 genes were associated with poor overall survival (OS) from TCGA database. Then, we detected a skewed distribution of γδ T cells with increased Vδ1 and decreased Vδ2 T cell subsets in AML. Moreover, significantly higher percentages of PD-1+ γδ, Foxp3+ γδ, and PD-1+Foxp3+ γδ T cells were detected in de novo AML patients compared with healthy individuals. More importantly, AML patients containing higher PD-1+Foxp3+ γδ T cells had lower OS, which might be a potential therapeutic target for leukemia immunotherapy. Conclusion A significant increase in the PD-1+Foxp3+ γδ T cell subset in AML was associated with poor clinical outcome, which provides predictive value for the study of AML patients.
Collapse
Affiliation(s)
- Jiamian Zheng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Dan Qiu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China,Department of Traditional Chinese Medicine, Heyuan People’s Hospital, Heyuan, China
| | - Xuan Jiang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yun Zhao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Haotian Zhao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaofang Wu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Jie Chen
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jing Lai
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wenbin Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xutong Li
- Department of Oncology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China,*Correspondence: Yangqiu Li, ; Xiuli Wu, ; Zhenyi Jin,
| | - Xiuli Wu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China,*Correspondence: Yangqiu Li, ; Xiuli Wu, ; Zhenyi Jin,
| | - Zhenyi Jin
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China,Department of Pathology, School of Medicine, Jinan University, Guangzhou, China,*Correspondence: Yangqiu Li, ; Xiuli Wu, ; Zhenyi Jin,
| |
Collapse
|
16
|
Farhangnia P, Akbarpour M, Yazdanifar M, Aref AR, Delbandi AA, Rezaei N. Advances in therapeutic targeting of immune checkpoints receptors within the CD96-TIGIT axis: clinical implications and future perspectives. Expert Rev Clin Immunol 2022; 18:1217-1237. [PMID: 36154551 DOI: 10.1080/1744666x.2022.2128107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The development of therapeutic antibodies targeting immune checkpoint molecules (ICMs) that induce long-term remissions in cancer patients has revolutionized cancer immunotherapy. However, a major drawback is that relapse after an initial response may be attributed to innate and acquired resistance. Additionally, these treatments are not beneficial to all patients. Therefore, the discovery and targeting of novel ICMs and their combination with other immunotherapeutics are urgently needed. AREAS COVERED There has been increasing evidence of the CD96-TIGIT axis as ICMs in cancer immunotherapy in the last five years. This review will highlight and discuss the current knowledge about the role of CD96 and TIGIT in hematological and solid tumor immunotherapy in the context of empirical studies and clinical trials, and provide a comprehensive list of ongoing cancer clinical trials on the blockade of these ICMs, as well as the rationale behind combinational therapies with anti-PD-1/PD-L1 agents, chemotherapy drugs, and radiotherapy. Moreover, we share our perspectives on anti-CD96/TIGIT-related combination therapies. EXPERT OPINION CD96-TIGIT axis regulates anti-tumor immune responses. Thus, the receptors within this axis are the potential candidates for cancer immunotherapy. Combining the inhibition of CD96-TIGIT with anti-PD-1/PD-L1 mAbs and chemotherapy drugs has shown relatively effective results in the context of preclinical studies and tumor models.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, USA
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Luciano M, Krenn PW, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia. Front Immunol 2022; 13:1000996. [PMID: 36248849 PMCID: PMC9554002 DOI: 10.3389/fimmu.2022.1000996] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous malignancy of the blood and bone marrow, characterized by clonal expansion of myeloid stem and progenitor cells and rapid disease progression. Chemotherapy has been the first-line treatment for AML for more than 30 years. Application of recent high-throughput next-generation sequencing technologies has revealed significant molecular heterogeneity to AML, which in turn has motivated efforts to develop new, targeted therapies. However, due to the high complexity of this disease, including multiple driver mutations and the coexistence of multiple competing tumorigenic clones, the successful incorporation of these new agents into clinical practice remains challenging. These continuing difficulties call for the identification of innovative therapeutic approaches that are effective for a larger cohort of AML patients. Recent studies suggest that chronic immune stimulation and aberrant cytokine signaling act as triggers for AML initiation and progression, facets of the disease which might be exploited as promising targets in AML treatment. However, despite the greater appreciation of cytokine profiles in AML, the exact functions of cytokines in AML pathogenesis are not fully understood. Therefore, unravelling the molecular basis of the complex cytokine networks in AML is a prerequisite to develop new therapeutic alternatives based on targeting cytokines and their receptors.
Collapse
Affiliation(s)
- Michela Luciano
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Peter W. Krenn
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
18
|
Geng S, Xu R, Huang X, Li M, Deng C, Lai P, Wang Y, Wu P, Chen X, Weng J, Du X. Dynamics of PD-1 expression are associated with treatment efficacy and prognosis in patients with intermediate/high-risk myelodysplastic syndromes under hypomethylating treatment. Front Immunol 2022; 13:950134. [PMID: 36003379 PMCID: PMC9393298 DOI: 10.3389/fimmu.2022.950134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Hypomethylating agents (HMAs) are widely used in patients with higher-risk MDS not eligible for stem cell transplantation. However, the general response rate by HMAs is lesser than 50% in MDS patients, while the relapse rate is high. Emerging evidence indicates that demethylating effects committed by HMAs may facilitate the up-regulation of a range of immune checkpoints or cancer suppressor genes in patients with MDS, among which the programmed death protein 1 (PD-1) and its ligands are demonstrated to be prominent and may contribute to treatment failure and early relapse. Although results from preliminary studies with a limited number of enrolled patients indicate that combined administration of PD-1 inhibitor may yield extra therapeutic benefit in some MDS patients, identifications of this subgroup of patients and optimal timing for the anti-PD-1 intervention remain significant challenges. Dynamics of immune checkpoints and associated predictive values during HMA-treatment cycles remained poorly investigated. In this present study, expression levels of immune checkpoints PD-1 and its ligands PD-L1 and PD-L2 were retrospectively analyzed by quantitative PCR (Q-PCR) in a total of 135 myelodysplastic syndromes (MDS) cohort with higher-risk stratification. The prognostic value of dynamics of these immune checkpoints during HMA cycles was validated in two independent prospective cohorts in our center (NCT01599325 and NCT01751867). Our data revealed that PD-1 expression was significantly higher than that in younger MDS patients (age ≤ 60) and MDS with lower IPSS risk stratification (intermediate risk-1). A significantly up-regulated expression of PD-1 was seen during the first four HMA treatment cycles in MDS patients, while similar observation was not seen concerning the expression of PD-L1 or PD-L2. By utilizing binary logistic regression and receiver operating characteristic (ROC) models, we further identified that higher or equal to 75.9 PD-1 expressions after 2 cycles of HMA treatment is an independent negative prognostic factor in predicting acute myeloid leukemia (AML) transformation and survival. Collectively, our data provide rationales for monitoring the expression of PD-1 during HMA treatment cycles, a higher than 75.9 PD-1 expression may identify patients who will potentially benefit from the combined therapy of HMA and PD-1 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xin Du
- *Correspondence: Xin Du, ; ; Jianyu Weng,
| |
Collapse
|
19
|
Zhigarev D, Varshavsky A, MacFarlane AW, Jayaguru P, Barreyro L, Khoreva M, Dulaimi E, Nejati R, Drenberg C, Campbell KS. Lymphocyte Exhaustion in AML Patients and Impacts of HMA/Venetoclax or Intensive Chemotherapy on Their Biology. Cancers (Basel) 2022; 14:cancers14143352. [PMID: 35884414 PMCID: PMC9320805 DOI: 10.3390/cancers14143352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Patients with acute myeloid leukemia (AML) are routinely treated with either intensive chemotherapy or DNA hypomethylating agents (HMA) in combination with the Bcl-2 inhibitor, venetoclax. While both treatment regimens are highly cytotoxic to the aggressive AML tumor cells, they are also toxic to immune cells. Therefore, we sought to establish the detrimental impacts of these therapies on lymphocytes and their recovery over time in AML patients. Even prior to treatment initiation, the patients were found to have exhausted lymphocytes in peripheral blood, and additional signs of exhaustion were noted after treatment with HMA/venetoclax. In fact, the lymphocytes were still suppressed for two to three months after the initiation of induction therapy. Furthermore, T cells in a subset of patients subsequently found to be resistant to venetoclax therapy exhibited a higher expression of perforin and CD39 and more pronounced IFN-γ production. Abstract Acute myeloid leukemia (AML) is an aggressive malignancy that requires rapid treatment with chemotherapies to reduce tumor burden. However, these chemotherapies can compromise lymphocyte function, thereby hindering normal anti-tumor immune responses and likely limiting the efficacy of subsequent immunotherapy. To better understand these negative impacts, we assessed the immunological effects of standard-of-care AML therapies on lymphocyte phenotype and function over time. When compared to healthy donors, untreated AML patients showed evidence of lymphocyte activation and exhaustion and had more prevalent CD57+NKG2C+ adaptive NK cells, which was independent of human cytomegalovirus (HCMV) status. HMA/venetoclax treatment resulted in a greater fraction of T cells with effector memory phenotype, inhibited IFN-γ secretion by CD8+ T cells, upregulated perforin expression in NK cells, downregulated PD-1 and 2B4 expression on CD4+ T cells, and stimulated Treg proliferation and CTLA-4 expression. Additionally, we showed increased expression of perforin and CD39 and enhanced IFN-γ production by T cells from pre-treatment blood samples of venetoclax-resistant AML patients. Our results provide insight into the lymphocyte status in previously untreated AML patients and the effects of standard-of-care treatments on their biology and functions. We also found novel pre-treatment characteristics of T cells that could potentially predict venetoclax resistance.
Collapse
Affiliation(s)
- Dmitry Zhigarev
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (D.Z.); (A.W.M.IV)
- Department of Immunology, Pirogov Russian National Research Medical University, Moscow 117997, Russia;
| | - Asya Varshavsky
- Department of Bone Marrow Transplant and Cellular Therapies, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Alexander W. MacFarlane
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (D.Z.); (A.W.M.IV)
| | - Prathiba Jayaguru
- Oncology Translational Research, Janssen R&D, Spring House, PA 19477, USA; (P.J.); (L.B.); (C.D.)
| | - Laura Barreyro
- Oncology Translational Research, Janssen R&D, Spring House, PA 19477, USA; (P.J.); (L.B.); (C.D.)
| | - Marina Khoreva
- Department of Immunology, Pirogov Russian National Research Medical University, Moscow 117997, Russia;
| | - Essel Dulaimi
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (E.D.); (R.N.)
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (E.D.); (R.N.)
| | - Christina Drenberg
- Oncology Translational Research, Janssen R&D, Spring House, PA 19477, USA; (P.J.); (L.B.); (C.D.)
| | - Kerry S. Campbell
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (D.Z.); (A.W.M.IV)
- Correspondence: ; Tel.: +1-215-728-7761; Fax: +1-215-727-2412
| |
Collapse
|
20
|
Ouyang X, Gong Y. One Stone, Two Birds: N6-Methyladenosine RNA Modification in Leukemia Stem Cells and the Tumor Immune Microenvironment in Acute Myeloid Leukemia. Front Immunol 2022; 13:912526. [PMID: 35720276 PMCID: PMC9201081 DOI: 10.3389/fimmu.2022.912526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia is the most common acute leukemia in adults, with accumulation of abundant blasts and impairment of hematogenic function. Despite great advances in diagnosis and therapy, the overall survival of patients with acute myeloid leukemia remains poor. Leukemia stem cells are the root cause of relapse and chemoresistance in acute myeloid leukemia. The tumor immune microenvironment is another trigger to induce recurrence and drug resistance. Understanding the underlying factors influencing leukemia stem cells and the tumor immune microenvironment is an urgent and unmet need. Intriguingly, N6-methyladenosine, the most widespread internal mRNA modification in eukaryotes, is found to regulate both leukemia stem cells and the tumor immune microenvironment. Methyltransferases and demethylases cooperatively make N6-methyladenosine modification reversible and dynamic. Increasing evidence demonstrates that N6-methyladenosine modification extensively participates in tumorigenesis and progression in various cancers, including acute myeloid leukemia. In this review, we summarize the current progress in studies on the functions of N6-methyladenosine modification in acute myeloid leukemia, especially in leukemia stem cells and the tumor immune microenvironment. We generalize the landscape of N6-methyladenosine modification in self-renewal of leukemia stem cells and immune microenvironment regulation, as well as in the initiation, growth, proliferation, differentiation, and apoptosis of leukemia cells. In addition, we further explore the clinical application of N6-methyladenosine modification in diagnosis, prognostic stratification, and effect evaluation. Considering the roles of N6-methyladenosine modification in leukemia stem cells and the tumor immune microenvironment, we propose targeting N6-methyladenosine regulators as one stone to kill two birds for acute myeloid leukemia treatment.
Collapse
Affiliation(s)
- Xianfeng Ouyang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China.,Department of Hematology, Jiujiang First People's Hospital, Jiujiang, China
| | - Yuping Gong
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Qiu D, Liu X, Wang W, Jiang X, Wu X, Zheng J, Zhou K, Kong X, Wu X, Jin Z. TIGIT axis: novel immune checkpoints in anti-leukemia immunity. Clin Exp Med 2022; 23:165-174. [PMID: 35419661 DOI: 10.1007/s10238-022-00817-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 12/01/2022]
Abstract
Hematologic malignancy evades immune-mediated recognition through upregulating various checkpoint inhibitory receptors (IRs) on several types of lymphocytes. Immunotherapies targeting IRs have provided ample evidence supporting regulating innate and adaptive immunity and obtaining clinical benefits. Newly described IRs have received considerable attention and are under investigation in cancer immunotherapy. Specifically, T cell immunoglobulin and ITIM domain is a novel inhibitory checkpoint receptor, and its immune checkpoint axis includes additional receptors such as CD96 and CD226, which are very promising targets. However, how the dynamics and functions of these receptor networks remain unknown, this review addresses the recent findings of the relevance of this complex receptor-ligand system and discusses their potential approaches in translating these preclinical findings into novel clinical agents in anti-leukemia immunotherapy.
Collapse
Affiliation(s)
- Dan Qiu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaxin Liu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wandi Wang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xuan Jiang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaofang Wu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiamian Zheng
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Kai Zhou
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xueting Kong
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiuli Wu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Zhenyi Jin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
22
|
Yang X, Ma L, Zhang X, Huang L, Wei J. Targeting PD-1/PD-L1 pathway in myelodysplastic syndromes and acute myeloid leukemia. Exp Hematol Oncol 2022; 11:11. [PMID: 35236415 PMCID: PMC8889667 DOI: 10.1186/s40164-022-00263-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell diseases arising from the bone marrow (BM), and approximately 30% of MDS eventually progress to AML, associated with increasingly aggressive neoplastic hematopoietic clones and poor survival. Dysregulated immune microenvironment has been recognized as a key pathogenic driver of MDS and AML, causing high rate of intramedullary apoptosis in lower-risk MDS to immunosuppression in higher-risk MDS and AML. Immune checkpoint molecules, including programmed cell death-1 (PD-1) and programmed cell death ligand-1 (PD-L1), play important roles in oncogenesis by maintaining an immunosuppressive tumor microenvironment. Recently, both molecules have been examined in MDS and AML. Abnormal inflammatory signaling, genetic and/or epigenetic alterations, interactions between cells, and treatment of patients all have been involved in dysregulating PD-1/PD-L1 signaling in these two diseases. Furthermore, with the PD-1/PD-L1 pathway activated in immune microenvironment, the milieu of BM shift to immunosuppressive, contributing to a clonal evolution of blasts. Nevertheless, numerous preclinical studies have suggested a potential response of patients to PD-1/PD-L1 blocker. Current clinical trials employing these drugs in MDS and AML have reported mixed clinical responses. In this paper, we focus on the recent preclinical advances of the PD-1/PD-L1 signaling in MDS and AML, and available and ongoing outcomes of PD-1/PD-L1 inhibitor in patients. We also discuss the novel PD-1/PD-L1 blocker-based immunotherapeutic strategies and challenges, including identifying reliable biomarkers, determining settings, and exploring optimal combination therapies.
Collapse
Affiliation(s)
- Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Ling Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoying Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China. .,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China. .,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| |
Collapse
|
23
|
Jiménez-Morales S, Aranda-Uribe IS, Pérez-Amado CJ, Ramírez-Bello J, Hidalgo-Miranda A. Mechanisms of Immunosuppressive Tumor Evasion: Focus on Acute Lymphoblastic Leukemia. Front Immunol 2021; 12:737340. [PMID: 34867958 PMCID: PMC8636671 DOI: 10.3389/fimmu.2021.737340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/27/2021] [Indexed: 01/05/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignancy with high heterogeneity in its biological features and treatments. Although the overall survival (OS) of patients with ALL has recently improved considerably, owing to the application of conventional chemo-therapeutic agents, approximately 20% of the pediatric cases and 40-50% of the adult patients relapse during and after the treatment period. The potential mechanisms that cause relapse involve clonal evolution, innate and acquired chemoresistance, and the ability of ALL cells to escape the immune-suppressive tumor response. Currently, immunotherapy in combination with conventional treatment is used to enhance the immune response against tumor cells, thereby significantly improving the OS in patients with ALL. Therefore, understanding the mechanisms of immune evasion by leukemia cells could be useful for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ivan Sammir Aranda-Uribe
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Departamento de Farmacología, División de Ciencias de la Salud, Universidad de Quintana Roo, Quintana Roo, Mexico
| | - Carlos Jhovani Pérez-Amado
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julian Ramírez-Bello
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|