1
|
Shefer A, Tutanov O, Belenikin M, Tsentalovich YP, Tamkovich S. Blood Plasma Circulating DNA-Protein Complexes: Involvement in Carcinogenesis and Prospects for Liquid Biopsy of Breast Cancer. J Pers Med 2023; 13:1691. [PMID: 38138918 PMCID: PMC10744380 DOI: 10.3390/jpm13121691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Circulating DNA (cirDNA) is a promising tool in translational medicine. However, studies of cirDNA have neglected its association with proteins, despite ample evidence that this interaction may affect the fate of DNA in the bloodstream and its molecular functions. The goal of the current study is to shed light on the differences between the proteomic cargos of histone-containing nucleoprotein complexes (NPCs) from healthy female (HFs) and breast cancer patients (BCPs), and to reveal the proteins involved in carcinogenesis. NPCs were isolated from the blood samples of HFs and BCPs using affinity chromatography. A total of 177 and 169 proteins were identified in NPCs from HFs and BCPs using MALDI-TOF mass spectrometry. A bioinformatics analysis revealed that catalytically active proteins, as well as proteins that bind nucleic acids and regulate the activity of receptors, are the most represented among the unique proteins of blood NPCs from HFs and BCPs. In addition, the proportion of proteins participating in ion channels and proteins binding proteins increases in the NPCs from BCP blood. However, the involvement in transport and signal transduction was greater in BCP NPCs compared to those from HFs. Gene ontology term (GO) analysis revealed that the NPC protein cargo from HF blood was enriched with proteins involved in the negative regulation of cell proliferation, and in BCP blood, proteins involved in EMT, invasion, and cell migration were observed. The combination of SPG7, ADRB1, SMCO4, PHF1, and PSMG1 NPC proteins differentiates BCPs from HFs with a sensitivity of 100% and a specificity of 80%. The obtained results indirectly indicate that, in tandem with proteins, blood cirDNA is an important part of intercellular communication, playing a regulatory and integrating role in the physiology of the body.
Collapse
Affiliation(s)
- Aleksei Shefer
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Oleg Tutanov
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA;
| | | | - Yuri P. Tsentalovich
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Svetlana Tamkovich
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
2
|
Jamshidi A, Liu MC, Klein EA, Venn O, Hubbell E, Beausang JF, Gross S, Melton C, Fields AP, Liu Q, Zhang N, Fung ET, Kurtzman KN, Amini H, Betts C, Civello D, Freese P, Calef R, Davydov K, Fayzullina S, Hou C, Jiang R, Jung B, Tang S, Demas V, Newman J, Sakarya O, Scott E, Shenoy A, Shojaee S, Steffen KK, Nicula V, Chien TC, Bagaria S, Hunkapiller N, Desai M, Dong Z, Richards DA, Yeatman TJ, Cohn AL, Thiel DD, Berry DA, Tummala MK, McIntyre K, Sekeres MA, Bryce A, Aravanis AM, Seiden MV, Swanton C. Evaluation of cell-free DNA approaches for multi-cancer early detection. Cancer Cell 2022; 40:1537-1549.e12. [PMID: 36400018 DOI: 10.1016/j.ccell.2022.10.022] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 08/03/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Abstract
In the Circulating Cell-free Genome Atlas (NCT02889978) substudy 1, we evaluate several approaches for a circulating cell-free DNA (cfDNA)-based multi-cancer early detection (MCED) test by defining clinical limit of detection (LOD) based on circulating tumor allele fraction (cTAF), enabling performance comparisons. Among 10 machine-learning classifiers trained on the same samples and independently validated, when evaluated at 98% specificity, those using whole-genome (WG) methylation, single nucleotide variants with paired white blood cell background removal, and combined scores from classifiers evaluated in this study show the highest cancer signal detection sensitivities. Compared with clinical stage and tumor type, cTAF is a more significant predictor of classifier performance and may more closely reflect tumor biology. Clinical LODs mirror relative sensitivities for all approaches. The WG methylation feature best predicts cancer signal origin. WG methylation is the most promising technology for MCED and informs development of a targeted methylation MCED test.
Collapse
Affiliation(s)
| | - Minetta C Liu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | - Nan Zhang
- GRAIL, LLC, Menlo Park, CA 94025, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Zhao Dong
- GRAIL, LLC, Menlo Park, CA 94025, USA
| | | | - Timothy J Yeatman
- Gibbs Cancer Center and Research Institute, Spartanburg, SC 29303, USA; Department of Surgery, University of Utah, Salt Lake City, UT 84112, USA
| | - Allen L Cohn
- Rocky Mountain Cancer Center, Denver, CO 80218, USA
| | - David D Thiel
- Department of Urology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Donald A Berry
- Department of Biostatistics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | - Charles Swanton
- Francis Crick Institute, London, NW1 1AT, UK; UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, London, WC1E 6DD, UK
| |
Collapse
|
3
|
Tutanov O, Shtam T, Grigor’eva A, Tupikin A, Tsentalovich Y, Tamkovich S. Blood Plasma Exosomes Contain Circulating DNA in Their Crown. Diagnostics (Basel) 2022; 12:diagnostics12040854. [PMID: 35453902 PMCID: PMC9027845 DOI: 10.3390/diagnostics12040854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
It is known that circulating DNA (cirDNA) is protected from nuclease activity by proteins that form macromolecular complexes with DNA. In addition, it was previously shown that cirDNA can bind to the outer surface of exosomes. NTA analysis and real-time PCR show that exosomes from healthy females (HF) or breast cancer patients (BCP) plasma contain less than 1.4 × 10−8 pg of DNA. Thus, only a minor part of cirDNA is attached to the outer side of the exosome as part of the vesicle crown: the share of exosomal DNA does not exceed 0.025% HF plasma DNA and 0.004% BCP plasma DNA. Treatment of plasma exosomes with DNase I with subsequent dot immunoassay reveals that H2a, H2b, and H3 histones are not part of the exosomal membrane, but are part of the cirDNA–protein macromolecular complex associated with the surface of the exosome either through interaction with DNA-binding proteins or with histone-binding proteins. Using bioinformatics approaches after identification by MALDI-TOF mass spectrometry, 16 exosomal DNA-binding proteins were identified. It was shown that four proteins—AIFM1, IGHM, CHD5, and KCNIP3—are candidates for DNA binding on the outer membrane of exosomes; the crown of exosomes may include five DNA-binding proteins: H2a, H2b, H3, IGHM, and ALB. Of note, AIFM1, IGHM, and CHD5 proteins are found only in HF plasma exosomes; KCNIP3 protein is identified only in BCP plasma exosomes; and H2a, H2b, H3, and ALB are revealed in all samples of plasma exosomes. Two histone-binding proteins, CHD5 and KDM6B, have been found in exosomes from HF plasma. The data obtained indicate that cirDNA preferentially binds to the outer membrane of exosomes by association with DNA-binding proteins.
Collapse
Affiliation(s)
- Oleg Tutanov
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia;
| | - Alina Grigor’eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.G.); (A.T.)
| | - Alexey Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.G.); (A.T.)
| | - Yuri Tsentalovich
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Svetlana Tamkovich
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia;
- Correspondence:
| |
Collapse
|
4
|
Adeola HA, Bello IO, Aruleba RT, Francisco NM, Adekiya TA, Adefuye AO, Ikwegbue PC, Musaigwa F. The Practicality of the Use of Liquid Biopsy in Early Diagnosis and Treatment Monitoring of Oral Cancer in Resource-Limited Settings. Cancers (Basel) 2022; 14:1139. [PMID: 35267452 PMCID: PMC8909754 DOI: 10.3390/cancers14051139] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 12/13/2022] Open
Abstract
An important driving force for precision and individualized medicine is the provision of tailor-made care for patients on an individual basis, in accordance with best evidence practice. Liquid biopsy(LB) has emerged as a critical tool for the early diagnosis of cancer and for treatment monitoring, but its clinical utility for oral squamous cell carcinoma (OSCC) requires more research and validation. Hence, in this review, we have discussed the current applications of LB and the practicality of its routine use in Africa; the potential advantages of LB over the conventional "gold-standard" of tissue biopsy; and finally, practical considerations were discussed in three parts: pre-analytic, analytic processing, and the statistical quality and postprocessing phases. Although it is imperative to establish clinically validated and standardized working guidelines for various aspects of LB sample collection, processing, and analysis for optimal and reliable use, manpower and technological infrastructures may also be an important factor to consider for the routine clinical application of LB for OSCC. LB is poised as a non-invasive precision tool for personalized oral cancer medicine, particularly for OSCC in Africa, when fully embraced. The promising application of different LB approaches using various downstream analyses such as released circulating tumor cells (CTCs), cell free DNA (cfDNA), microRNA (miRNA), messenger RNA (mRNA), and salivary exosomes were discussed. A better understanding of the diagnostic and therapeutic biomarkers of OSCC, using LB applications, would significantly reduce the cost, provide an opportunity for prompt detection and early treatment, and a method to adequately monitor the effectiveness of the therapy for OSCC, which typically presents with ominous prognosis.
Collapse
Affiliation(s)
- Henry Ademola Adeola
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape, Tygerberg Hospital, Cape Town 7505, South Africa
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Ibrahim O. Bello
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Raphael Taiwo Aruleba
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town 7700, South Africa;
| | - Ngiambudulu M. Francisco
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda 3635, Angola;
| | - Tayo Alex Adekiya
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 7 York Road, Johannesburg 2193, South Africa;
| | - Anthonio Oladele Adefuye
- Division of Health Sciences Education, Office of the Dean, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa;
| | - Paul Chukwudi Ikwegbue
- Division of Immunology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; (P.C.I.); (F.M.)
| | - Fungai Musaigwa
- Division of Immunology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; (P.C.I.); (F.M.)
| |
Collapse
|