1
|
Qiao N, Li C, Zheng F, Zhang L, Ma G, Jia Y, Cai K, Chen X, Lu P, Zhang Y, Gui S. Development and validation of a radiomics nomogram for preoperative prediction of BRAF V600E mutation status in adult patients with craniopharyngioma. Neurosurg Rev 2024; 48:8. [PMID: 39729136 DOI: 10.1007/s10143-024-03170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 12/28/2024]
Abstract
Although craniopharyngiomas are rare benign brain tumors primarily managed by surgery, they are often burdened by a poor prognosis due to tumor recurrence and long-term morbidity. In recent years, BRAFV600E-targeted therapy has been promising, showing potential as an adjuvant or neoadjuvant approach. Therefore, we aim to develop and validate a radiomics nomogram for preoperative prediction of BRAFV600E mutation in craniopharyngiomas. A total of 398 patients with craniopharyngioma (training cohort: n = 278; validation cohort: n = 120) were retrospectively reviewed. We extracted 851 radiomic features from MRI images and adopted a support vector machine (SVM) classifier to develop a radiomic model. Also, a clinical-radiomics nomogram was constructed based on a multivariable logistic regression analysis. The performance of the nomogram was evaluated by its discrimination, calibration, and clinical utility. The radiomic model using the SVM based on three selected features showed good discrimination in the training and validation cohorts (area under the curve [AUC], 0.941 and 0.945, respectively). A higher Rad-score, smaller tumor volume, and homogenous enhancement were demonstrated as independent predictors of BRAFV600E mutation in craniopharyngioma. The nomogram incorporating the Rad-score and clinical-radiological factors exhibited AUCs of 0.958 (95% CI, 0.936-0.980) and 0.956 (95% CI, 0.921-0.991) in the training and validation cohorts, respectively, showing good clinical benefit and calibration. The radiomics nomogram could provide an accurate, non-invasive preoperative prediction of BRAFV600E mutation in craniopharyngioma and may provide potential guidance for the preoperative administration of BRAF V600E mutation inhibitors and promote personalized treatment. Further prospective validation is still needed.
Collapse
Affiliation(s)
- Ning Qiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China
| | - Chuzhong Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fei Zheng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lingling Zhang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guofo Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China
| | - Yanfei Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China
| | - Kefan Cai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China
| | - Xuzhu Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Pengwei Lu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China
| | - Yazhuo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China.
| |
Collapse
|
2
|
Zheng B, Zhao Z, Zheng P, Liu Q, Li S, Jiang X, Huang X, Ye Y, Wang H. The current state of MRI-based radiomics in pituitary adenoma: promising but challenging. Front Endocrinol (Lausanne) 2024; 15:1426781. [PMID: 39371931 PMCID: PMC11449739 DOI: 10.3389/fendo.2024.1426781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
In the clinical diagnosis and treatment of pituitary adenomas, MRI plays a crucial role. However, traditional manual interpretations are plagued by inter-observer variability and limitations in recognizing details. Radiomics, based on MRI, facilitates quantitative analysis by extracting high-throughput data from images. This approach elucidates correlations between imaging features and pituitary tumor characteristics, thereby establishing imaging biomarkers. Recent studies have demonstrated the extensive application of radiomics in differential diagnosis, subtype identification, consistency evaluation, invasiveness assessment, and treatment response in pituitary adenomas. This review succinctly presents the general workflow of radiomics, reviews pertinent literature with a summary table, and provides a comparative analysis with traditional methods. We further elucidate the connections between radiological features and biological findings in the field of pituitary adenoma. While promising, the clinical application of radiomics still has a considerable distance to traverse, considering the issues with reproducibility of imaging features and the significant heterogeneity in pituitary adenoma patients.
Collapse
Affiliation(s)
- Baoping Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingping Zheng
- Department of Neurosurgery, People’s Hospital of Biyang County, Zhumadian, China
| | - Qiang Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Huang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youfan Ye
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haijun Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Zhao Z, Nie C, Zhao L, Xiao D, Zheng J, Zhang H, Yan P, Jiang X, Zhao H. Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas. Eur Radiol 2024; 34:2468-2479. [PMID: 37812296 PMCID: PMC10957672 DOI: 10.1007/s00330-023-10252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE The purpose of this study was to develop and validate a nomogram combined multiparametric MRI and clinical indicators for identifying the WHO grade of meningioma. MATERIALS AND METHODS Five hundred and sixty-eight patients were included in this study, who were diagnosed pathologically as having meningiomas. Firstly, radiomics features were extracted from CE-T1, T2, and 1-cm-thick tumor-to-brain interface (BTI) images. Then, difference analysis and the least absolute shrinkage and selection operator were orderly used to select the most representative features. Next, the support vector machine algorithm was conducted to predict the WHO grade of meningioma. Furthermore, a nomogram incorporated radiomics features and valuable clinical indicators was constructed by logistic regression. The performance of the nomogram was assessed by calibration and clinical effectiveness, as well as internal validation. RESULTS Peritumoral edema volume and gender are independent risk factors for predicting meningioma grade. The multiparametric MRI features incorporating CE-T1, T2, and BTI features showed the higher performance for prediction of meningioma grade with a pooled AUC = 0.885 (95% CI, 0.821-0.946) and 0.860 (95% CI, 0.788-0.923) in the training and test groups, respectively. Then, a nomogram with a pooled AUC = 0.912 (95% CI, 0.876-0.961), combined radiomics score, peritumoral edema volume, and gender improved diagnostic performance compared to radiomics model or clinical model and showed good calibration as the true results. Moreover, decision curve analysis demonstrated satisfactory clinical effectiveness of the proposed nomogram. CONCLUSIONS A novel nomogram is simple yet effective in differentiating WHO grades of meningioma and thus can be used in patients with meningiomas. CLINICAL RELEVANCE STATEMENT We proposed a nomogram that included clinical indicators and multi-parameter radiomics features, which can accurately, objectively, and non-invasively differentiate WHO grading of meningioma and thus can be used in clinical work. KEY POINTS • The study combined radiomics features and clinical indicators for objectively predicting the meningioma grade. • The model with CE-T1 + T2 + brain-to-tumor interface features demonstrated the best predictive performance by investigating seven different radiomics models. • The nomogram potentially has clinical applications in distinguishing high-grade and low-grade meningiomas.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuansheng Nie
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- International Education College of Henan University, Kaifeng, China
| | - Dongdong Xiao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianglin Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- Department of Geriatric Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Yan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Shen C, Liu X, Jin J, Han C, Wu L, Wu Z, Su Z, Chen X. A Novel Magnetic Resonance Imaging-Based Radiomics and Clinical Predictive Model for the Regrowth of Postoperative Residual Tumor in Non-Functioning Pituitary Neuroendocrine Tumor. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1525. [PMID: 37763643 PMCID: PMC10535289 DOI: 10.3390/medicina59091525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: To develop a novel magnetic resonance imaging (MRI)-based radiomics-clinical risk stratification model to predict the regrowth of postoperative residual tumors in patients with non-functioning pituitary neuroendocrine tumors (NF-PitNETs). Materials and Methods: We retrospectively enrolled 114 patients diagnosed as NF-PitNET with postoperative residual tumors after the first operation, and the diameter of the tumors was greater than 10 mm. Univariate and multivariate analyses were conducted to identify independent clinical risk factors. We identified the optimal sequence to generate an appropriate radiomic score (Rscore) that combined pre- and postoperative radiomic features. Three models were established by logistic regression analysis that combined clinical risk factors and radiomic features (Model 1), single clinical risk factors (Model 2) and single radiomic features (Model 3). The models' predictive performances were evaluated using receiver operator characteristic (ROC) curve analysis and area under curve (AUC) values. A nomogram was developed and evaluated using decision curve analysis. Results: Knosp classification and preoperative tumor volume doubling time (TVDT) were high-risk factors (p < 0.05) with odds ratios (ORs) of 2.255 and 0.173. T1WI&T1CE had a higher AUC value (0.954) and generated an Rscore. Ultimately, the AUC of Model 1 {0.929 [95% Confidence interval (CI), 0.865-0.993]} was superior to Model 2 [0.811 (95% CI, 0.704-0.918)] and Model 3 [0.844 (95% CI, 0.748-0.941)] in the training set, which were 0.882 (95% CI, 0.735-1.000), 0.834 (95% CI, 0.676-0.992) and 0.763 (95% CI, 0.569-0.958) in the test set, respectively. Conclusions: We trained a novel radiomics-clinical predictive model for identifying patients with NF-PitNETs at increased risk of postoperative residual tumor regrowth. This model may help optimize individualized and stratified clinical treatment decisions.
Collapse
Affiliation(s)
- Chaodong Shen
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaoyan Liu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jinghao Jin
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Cheng Han
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lihao Wu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zerui Wu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhipeng Su
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaofang Chen
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
5
|
Pei G, Wang D, Sun K, Yang Y, Tang W, Sun Y, Yin S, Liu Q, Wang S, Huang Y. Deep learning-enhanced radiomics for histologic classification and grade stratification of stage IA lung adenocarcinoma: a multicenter study. Front Oncol 2023; 13:1224455. [PMID: 37546407 PMCID: PMC10400286 DOI: 10.3389/fonc.2023.1224455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Background Preoperative prediction models for histologic subtype and grade of stage IA lung adenocarcinoma (LUAD) according to the update of the WHO Classification of Tumors of the Lung in 2021 and the 2020 new grade system are yet to be explored. We aim to develop the noninvasive pathology and grade evaluation approach for patients with stage IA LUAD via CT-based radiomics approach and evaluate their performance in clinical practice. Methods Chest CT scans were retrospectively collected from patients who were diagnosed with stage IA LUAD and underwent complete resection at two hospitals. A deep learning segmentation algorithm was first applied to assist lesion delineation. Expansion strategies such as bounding-box annotations were further applied. Radiomics features were then extracted and selected followed by radiomics modeling based on four classic machine learning algorithms for histologic subtype classification and grade stratification. The area under the receiver operating characteristic curve (AUC) was used to evaluate model performance. Results The study included 294 and 145 patients with stage IA LUAD from two hospitals for radiomics analysis, respectively. For classification of four histological subtypes, multilayer perceptron (MLP) algorithm presented no annotation strategy preference and achieved the average AUC of 0.855, 0.922, and 0.720 on internal, independent, and external test sets with 1-pixel expansion annotation. Bounding-box annotation strategy also enabled MLP an acceptable and stable accuracy among test sets. Meanwhile, logistic regression was selected for grade stratification and achieved the average AUC of 0.928, 0.837, and 0.748 on internal, independent, and external test sets with optimal annotation strategies. Conclusions DL-enhanced radiomics models had great potential to predict the fine histological subtypes and grades of early-stage LUADs based on CT images, which might serve as a promising noninvasive approach for the diagnosis and management of early LUADs.
Collapse
Affiliation(s)
- Guotian Pei
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Dawei Wang
- Institute of Advanced Research, Infervision Medical Technology Co. Ltd., Beijing, China
| | - Kunkun Sun
- Department of Pathology, Peking University People’s Hospital, Beijing, China
| | - Yingshun Yang
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Wen Tang
- Institute of Advanced Research, Infervision Medical Technology Co. Ltd., Beijing, China
| | - Yanfeng Sun
- Institute of Advanced Research, Infervision Medical Technology Co. Ltd., Beijing, China
| | - Siyuan Yin
- Institute of Advanced Research, Infervision Medical Technology Co. Ltd., Beijing, China
| | - Qiang Liu
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Shuai Wang
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Yuqing Huang
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| |
Collapse
|
6
|
Application of artificial intelligence and radiomics in pituitary neuroendocrine and sellar tumors: a quantitative and qualitative synthesis. Neuroradiology 2021; 64:647-668. [PMID: 34839380 DOI: 10.1007/s00234-021-02845-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE To systematically review the literature regarding the application of machine learning (ML) of magnetic resonance imaging (MRI) radiomics in common sellar tumors. To identify future directions for application of ML in sellar tumor MRI. METHODS PubMed, Medline, Embase, Google Scholar, Scopus, ArxIV, and bioRxiv were searched to identify relevant studies published between 2010 and September 2021. Studies were included if they specifically involved ML of MRI radiomics in the analysis of sellar masses. Risk of bias assessment was performed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) Tool. RESULTS Fifty-eight articles were identified for review. All papers utilized retrospective data, and a quantitative systematic review was performed for thirty-one studies utilizing a public dataset which compared pituitary adenomas, meningiomas, and gliomas. One of the analyzed architectures yielded the highest classification accuracy of 0.996. The remaining twenty-seven articles were qualitatively reviewed and showed promising findings in predicting specific tumor characteristics such as tumor consistency, Ki-67 proliferative index, and post-surgical recurrence. CONCLUSION This review highlights the potential clinical application of ML using MRI radiomic data of the sellar region in diagnosis and predicting treatment outcomes. We describe future directions for practical application in the clinical care of patients with pituitary neuroendocrine and other sellar tumors.
Collapse
|