1
|
Haseltine WA, Hazel K, Patarca R. RNA Structure: Past, Future, and Gene Therapy Applications. Int J Mol Sci 2024; 26:110. [PMID: 39795966 PMCID: PMC11719923 DOI: 10.3390/ijms26010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
First believed to be a simple intermediary between the information encoded in deoxyribonucleic acid and that functionally displayed in proteins, ribonucleic acid (RNA) is now known to have many functions through its abundance and intricate, ubiquitous, diverse, and dynamic structure. About 70-90% of the human genome is transcribed into protein-coding and noncoding RNAs as main determinants along with regulatory sequences of cellular to populational biological diversity. From the nucleotide sequence or primary structure, through Watson-Crick pairing self-folding or secondary structure, to compaction via longer distance Watson-Crick and non-Watson-Crick interactions or tertiary structure, and interactions with RNA or other biopolymers or quaternary structure, or with metabolites and biomolecules or quinary structure, RNA structure plays a critical role in RNA's lifecycle from transcription to decay and many cellular processes. In contrast to the success of 3-dimensional protein structure prediction using AlphaFold, RNA tertiary and beyond structures prediction remains challenging. However, approaches involving machine learning and artificial intelligence, sequencing of RNA and its modifications, and structural analyses at the single-cell and intact tissue levels, among others, provide an optimistic outlook for the continued development and refinement of RNA-based applications. Here, we highlight those in gene therapy.
Collapse
Affiliation(s)
- William A. Haseltine
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
- Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA
| | - Kim Hazel
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
| | - Roberto Patarca
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
- Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA
| |
Collapse
|
2
|
Jin K, Lan H, Han Y, Qian J. Exosomes in cancer diagnosis based on the Latest Evidence: Where are We? Int Immunopharmacol 2024; 142:113133. [PMID: 39278058 DOI: 10.1016/j.intimp.2024.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/09/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Exosomes are small extracellular vesicles (EVs) derived from various cellular sources and have emerged as favorable biomarkers for cancer diagnosis and prognosis. These vesicles contain a variety of molecular components, including nucleic acids, proteins, and lipids, which can provide valuable information for cancer detection, classification, and monitoring. However, the clinical application of exosomes faces significant challenges, primarily related to the standardization and scalability of their use. In order to overcome these challenges, sophisticated methods such as liquid biopsy and imaging are being combined to augment the diagnostic capabilities of exosomes. Additionally, a deeper understanding of the interaction between exosomes and immune system components within the tumor microenvironment (TME) is essential. This review discusses the biogenesis and composition of exosomes, addresses the current challenges in their clinical translation, and highlights recent technological advancements and integrative approaches that support the role of exosomes in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China.
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China; Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Yuejun Han
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China.
| |
Collapse
|
3
|
Sandhanam K, Tamilanban T, Bhattacharjee B, Manasa K. Exploring miRNA therapies and gut microbiome-enhanced CAR-T cells: advancing frontiers in glioblastoma stem cell targeting. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03479-9. [PMID: 39382681 DOI: 10.1007/s00210-024-03479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Glioblastoma multiforme (GBM) presents a formidable challenge in oncology due to its aggressive nature and resistance to conventional treatments. Recent advancements propose a novel therapeutic strategy combining microRNA-based therapies, chimeric antigen receptor-T (CAR-T) cells, and gut microbiome modulation to target GBM stem cells and transform cancer treatment. MicroRNA therapies show promise in regulating key signalling pathways implicated in GBM progression, offering the potential to disrupt GBM stem cell renewal. CAR-T cell therapy, initially successful in blood cancers, is being adapted to target GBM by genetically engineering T cells to recognise and eliminate GBM stem cell-specific antigens. Despite early successes, challenges like the immunosuppressive tumour microenvironment persist. Additionally, recent research has uncovered a link between the gut microbiome and GBM, suggesting that gut dysbiosis can influence systemic inflammation and immune responses. Novel strategies to modulate the gut microbiome are emerging, enhancing the efficacy of microRNA therapies and CAR-T cell treatments. This combined approach highlights the synergistic potential of these innovative therapies in GBM treatment, aiming to eradicate primary tumours and prevent recurrence, thereby improving patient prognosis and quality of life. Ongoing research and clinical trials are crucial to fully exploit this promising frontier in GBM therapy, offering hope to patients grappling with this devastating disease.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India.
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury University-Tezpur Campus, 784501, Assam, India
| | - K Manasa
- Department of Pharmacology, MNR College of Pharmacy, Sangareddy, 502294, Telangana, India
| |
Collapse
|
4
|
Guo M, Peng R, Jin K, Zhang X, Mo H, Li X, Qu F, Tang J, Cao S, Zhou Y, He Z, Mao Z, Fan J, Li J, Liu Z. Effects of Aeromonas infection on the immune system, physical barriers and microflora structure in the intestine of juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109790. [PMID: 39059563 DOI: 10.1016/j.fsi.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Grass carp (Ctenopharyngodon idella) is an intensively cultured and economically important herbivorous fish species in China, but its culture is often impacted by Aeromonas pathogens such as Aeromonas hydrophila and Aeromonas veronii. In this study, healthy grass carp were separately infected with A. hydrophila or A. veronii for 12, 24, 48 or 72 h. The results showed that the mRNA expression levels of intestinal inflammatory factors (tnf-α, il-1β and il-8), complement factors (c3 and c4), antimicrobial peptides (hepcidin, nk-lysin and β-defensin-1), immunoglobulins (igm and igt), and immune pathway-related signaling molecules (tlr1, tlr2, tlr4, myd88, irak4, irak1, traf6, nf-κb p65 and ap-1) were differentially upregulated in response to A. hydrophila and A. veronii challenge. Additionally, the expression levels of the intestinal pro-apoptotic genes tnfr1, tnfr2, tradd, caspase-8, caspase-3 and bax were significantly increased, whereas the expression of the inhibitory factor bcl-2 was significantly downregulated, indicating that Aeromonas infection significantly induced apoptosis in the intestine of grass carp. Moreover, the expression of intestinal tight junction proteins (occludin, zo-1, claudin b and claudin c) was significantly decreased after infection with Aeromonas. Histopathological analysis indicated the Aeromonas challenge caused severe damage to the intestinal villi with adhesions and detachment of intestinal villi accompanied by severe inflammatory cell infiltration at 12 h and 72 h. The 16S rRNA sequencing results showed that Aeromonas infection significantly altered the structure of the intestinal microflora of the grass carp at the phylum (Proteobacteria, Fusobacteria, Bacteroidetes and Firmicutes) and genus (Proteus, Cetobacterium, Bacteroides, and Aeromonas) levels. Take together, the findings of this study revealed that Aeromonas infection induces an intestinal immune response, triggers cell apoptosis, destroys physical barriers and alters microflora structure in the intestine of juvenile grass carp; the results will help to reveal the pathogenesis of intestinal bacterial diseases in grass carp.
Collapse
Affiliation(s)
- Meixing Guo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ran Peng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Kelan Jin
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Xia Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Huilan Mo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Xiang Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China.
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Yonghua Zhou
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhimin He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhuangwen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Junde Fan
- Yueyang Yumeikang Biotechnology Co., Ltd., Yueyang, 414100, China
| | - Jianzhong Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China.
| |
Collapse
|
5
|
Chen X, Zhang T, He YQ, Miao TW, Yin J, Ding Q, Yang M, Chen FY, Zeng HP, Liu J, Zhu Q. NGEF is a potential prognostic biomarker and could serve as an indicator for immunotherapy and chemotherapy in lung adenocarcinoma. BMC Pulm Med 2024; 24:248. [PMID: 38764064 PMCID: PMC11102621 DOI: 10.1186/s12890-024-03046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Neuronal guanine nucleotide exchange factor (NGEF) plays a key role in several cancers; however, its role in lung adenocarcinoma (LUAD) remains unclear. The aim of this study was to evaluate the efficacy of NGEF as a prognostic biomarker and potential therapeutic target for LUAD. METHODS NGEF expression data for multiple cancers and LUAD were downloaded from multiple databases. The high- and low-NGEF expression groups were constructed based on median NGEF expression in LUAD samples, and then performed Kaplan-Meier survival analysis. Differentially expressed genes (DEGs) from the two NGEF expression groups were screened and applied to construct a protein-protein interaction network. The primary pathways were obtained using gene set enrichment analysis. The associations between NGEF expression and clinical characteristics, immune infiltration, immune checkpoint inhibitors (ICIs), sensitivity to chemotherapy, and tumor mutation burden (TMB) were investigated using R. Levels of NGEF expression in the lung tissue was validated using single-cell RNA sequencing, quantitative polymerase chain reaction (qPCR), immunohistochemical staining, and western blot analysis. RESULTS The expression of NGEF mRNA was upregulated in multiple cancers. mRNA and protein expression levels of NGEF were higher in patients with LUAD than in controls, as validated using qPCR and western blot. High NGEF expression was an independent prognostic factor for LUAD and was associated with advanced tumor stage, large tumor size, more lymph node metastasis, and worse overall survival (OS). A total of 182 overlapping DEGs were screened between The Cancer Genome Atlas and GSE31210, among which the top 20 hub genes were identified. NGEF expression was mainly enriched in the pathways of apoptosis, cell cycle, and DNA replication. Moreover, elevated NGEF expression were associated with a high fraction of activated memory CD4+ T cells and M0 macrophages; elevated expression levels of the ICIs: programmed cell death 1 and programmed cell death 1 ligand 1 expression; higher TMB; and better sensitivity to bortezomib, docetaxel, paclitaxel, and parthenolide, but less sensitivity to axitinib and metformin. CONCLUSION NGEF expression is upregulated in LUAD and is significantly associated with tumor stages, OS probability, immune infiltration, immunotherapy response, and chemotherapy response. NGEF may be a potential diagnostic and prognostic biomarker and therapeutic target in LUAD.
Collapse
Affiliation(s)
- Xin Chen
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People's Hospital, Zigong, China.
| | - Tao Zhang
- Department of Intensive Care Unit, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yan-Qiu He
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People's Hospital, Zigong, China
| | - Ti-Wei Miao
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People's Hospital, Zigong, China
| | - Jie Yin
- School of Automation & Information Engineering, Sichuan university of Science & Engineering, Zigong, China
| | - Qian Ding
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People's Hospital, Zigong, China
| | - Mei Yang
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People's Hospital, Zigong, China
| | - Fang-Ying Chen
- Department of Tuberculosis, The Third People's Hospital of Tibet Autonomous Region, Lhasa, China
| | - Hong-Ping Zeng
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People's Hospital, Zigong, China
| | - Jie Liu
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People's Hospital, Zigong, China
| | - Qi Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People's Hospital, Zigong, China
| |
Collapse
|
6
|
Sun K, Sun Y, Du X, Zhang X, Ma Z, Gao Y, Liang X. Lnc-Clic5 as a sponge for miR-212-5p to inhibit cow barn PM 2.5-induced apoptosis in rat alveolar macrophages. Toxicology 2024; 504:153797. [PMID: 38583737 DOI: 10.1016/j.tox.2024.153797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/17/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Particulate matter 2.5 (PM2.5) is a highly hazardous airborne particulate matter that poses a significant risk to humans and animals. Urban airborne particulate matter contributes to the increased incidence and mortality of respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), in humans. However, the specific mechanism by which PM2.5 affects animals in barn environments is yet to be elucidated. In this study, we investigated the effect of exposure to cow barn PM2.5 on rat alveolar macrophages (NR8383) and found that it induced apoptosis via the miR-212-5p/RASSF1 pathway. We found that lnc-Clic5 expression was downregulated in NR8383 cells exposed to cow barn PM2.5. Lnc-Clic5 plays a competitive endogenous RNA (ceRNA) regulatory role by sponging miR-212-5p to attenuate the regulation of RASSF1. Moreover, lnc-Clic5 overexpression inhibited NR8383 apoptosis by targeting the miR-212-5p/RASSF1 pathway. Co-treatment with miR-212-5p and lnc-Clic5 in the presence of cow barn PM2.5 revealed that lnc-Clic5 reversed NR8383 cell apoptosis induced by PM2.5 when miR-212-5p was overexpressed. These findings contribute to the study of ncRNAs and ceRNAs regulating PM2.5-induced apoptosis in animal farms, provide therapeutic targets for lung macrophage apoptosis, and may be useful for further evaluating the toxicological effects of PM2.5 in farmhouses on the respiratory systems of humans and animals.
Collapse
Affiliation(s)
- Ke Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yize Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaohui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiqing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhenhua Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Xiaojun Liang
- Ningxia Academy of Agriculture and Forestry, Yinchuan 750002, China.
| |
Collapse
|
7
|
Stacey VM, Kõks S. Genome-Wide Differential Transcription of Long Noncoding RNAs in Psoriatic Skin. Int J Mol Sci 2023; 24:16344. [PMID: 38003532 PMCID: PMC10671291 DOI: 10.3390/ijms242216344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/11/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) may contribute to the formation of psoriatic lesions. The present study's objective was to identify long lncRNA genes that are differentially expressed in patient samples of psoriasis through computational analysis techniques. By using previously published RNA sequencing data from psoriatic and healthy patients (n = 324), we analysed the differential expression of lncRNAs to determine transcripts of heightened expression. We computationally screened lncRNA transcripts as annotated by GENCODE across the human genome and compared transcription in psoriatic and healthy samples from two separate studies. We observed 54 differentially expressed genes as seen in two independent datasets collected from psoriasis and healthy patients. We also identified the differential expression of LINC01215 and LINC1206 associated with the cell cycle pathway and psoriasis pathogenesis. SH3PXD2A-AS1 was identified as a participant in the STAT3/SH3PXD2A-AS1/miR-125b/STAT3 positive feedback loop. Both the SH3PXD2A-AS1 and CERNA2 genes have already been recognised as part of the IFN-γ signalling pathway regulation. Additionally, EPHA1-AS1, CYP4Z2P and SNHG12 gene upregulation have all been previously linked to inflammatory skin diseases. Differential expression of various lncRNAs affects the pathogenesis of psoriasis. Further characterisation of lncRNAs and their functions are important for developing our understanding of psoriasis.
Collapse
Affiliation(s)
- Valerie M. Stacey
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
8
|
Almalki WH. Beyond the genome: lncRNAs as regulators of the PI3K/AKT pathway in lung cancer. Pathol Res Pract 2023; 251:154852. [PMID: 37837857 DOI: 10.1016/j.prp.2023.154852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Lung cancer is a prevalent and devastating disease, representing a significant global health burden. Despite advancements in therapeutic strategies, the molecular mechanisms underlying its pathogenesis remain incompletely understood. Lung cancer typically displays the deregulated activity of the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, which is vital for cell proliferation, survival, and metastasis. Emerging evidence suggests that long non-coding RNA (lncRNAs) can modulate the PI3K/AKT pathway, offering new insights into lung cancer biology and potential therapeutic opportunities. These lncRNA act as either oncogenes, promoting pathway activation, or tumour suppressors, attenuating pathway signalling. The dysregulation of lncRNA is associated with various cellular processes, including apoptosis, cell cycle control, epithelial-mesenchymal transition (EMT), and angiogenesis, ultimately influencing lung cancer growth and metastasis. The development of novel therapeutic strategies, such as small interfering RNAs (siRNAs), antisense oligonucleotides, and CRISPR/Cas9-mediated gene editing, holds promise for restoring lncRNAs dysregulation and re-establishing the equilibrium of the PI3K/AKT pathway. The emerging role of lncRNAs as regulators of the PI3K/AKT pathway sheds new light on the complex molecular landscape of lung cancer. Understanding the interplay between lncRNA and the PI3K/AKT pathway could lead to the identification of novel biomarkers for prognosis and therapeutic targets for precision medicine. The potential of lncRNAs-based therapeutics may pave the way for more effective and personalized treatment approaches in lung cancer and potentially other malignancies with dysregulated PI3K/AKT signalling. This review aims to explore the emerging role of lncRNAs as key regulators of the PI3K/AKT pathway in lung cancer.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
9
|
Zhao Z, Meng M, Yao J, Zhou H, Chen Y, Liu J, Wang J, Liu Y, Qiao Y, Zhang M, Qi J, Zhang T, Zhou Z, Jiang T, Shang B, Zhou Q. The long non-coding RNA keratin-7 antisense acts as a new tumor suppressor to inhibit tumorigenesis and enhance apoptosis in lung and breast cancers. Cell Death Dis 2023; 14:293. [PMID: 37185462 PMCID: PMC10130017 DOI: 10.1038/s41419-023-05802-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023]
Abstract
Expression of the long non-coding RNA (lncRNA) keratin-7 antisense (KRT7-AS) is downregulated in various types of cancer; however, the impact of KRT7-AS deficiency on tumorigenesis and apoptosis is enigmatic. We aim to explore the influence of KRT7-AS in carcinogenesis and apoptosis. We found that KRT7-AS was deficient in breast and lung cancers, and low levels of KRT7-AS were a poor prognostic factor in breast cancer. Cellular studies showed that silencing of KRT7-AS in lung cancer cells increased oncogenic Keratin-7 levels and enhanced tumorigenesis, but diminished cancer apoptosis of the cancer cells; by contrast, overexpression of KRT7-AS inhibited lung cancer cell tumorigenesis. Additionally, KRT7-AS sensitized cancer cells to the anti-cancer drug cisplatin, consequently enhancing cancer cell apoptosis. In vivo, KRT7-AS overexpression significantly suppressed tumor growth in xenograft mice, while silencing of KRT7-AS promoted tumor growth. Mechanistically, KRT7-AS reduced the levels of oncogenic Keratin-7 and significantly elevated amounts of the key tumor suppressor PTEN in cancer cells through directly binding to PTEN protein via its core nucleic acid motif GGCAAUGGCGG. This inhibited the ubiquitination-proteasomal degradation of PTEN protein, therefore elevating PTEN levels in cancer cells. We also found that KRT7-AS gene transcription was driven by the transcription factor RXRα; intriguingly, the small molecule berberine enhanced KRT7-AS expression, reduced tumorigenesis, and promoted apoptosis of cancer cells. Collectively, KRT7-AS functions as a new tumor suppressor and an apoptosis enhancer in lung and breast cancers, and we unraveled that the RXRα-KRT7-AS-PTEN signaling axis controls carcinogenesis and apoptosis. Our findings highlight a tumor suppressive role of endogenous KRT7-AS in cancers and an important effect the RXRα-KRT7-AS-PTEN axis on control of cancer cell tumorigenesis and apoptosis, and offer a new platform for developing novel therapeutics against cancers.
Collapse
Affiliation(s)
- Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, PR China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Jun Yao
- Department of General Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Hao Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Yu Chen
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Juntao Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Jie Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Yuxi Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Yingnan Qiao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Mengli Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Jindan Qi
- School of Nursing, Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Tong Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Zhou Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Tao Jiang
- Department of Pathology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Bingxue Shang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Soochow University, 215123, Suzhou, PR China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, PR China
- The First Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China.
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, PR China.
- National Clinical Research Center for Hematologic Diseases, The Affiliated Hospital of Soochow University, Suzhou, PR China.
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health; Soochow University, Suzhou, Jiangsu, 215123, PR China.
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, PR China.
- The Ninth Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
10
|
Hashemi M, Paskeh MDA, Orouei S, Abbasi P, Khorrami R, Dehghanpour A, Esmaeili N, Ghahremanzade A, Zandieh MA, Peymani M, Salimimoghadam S, Rashidi M, Taheriazam A, Entezari M, Hushmandi K. Towards dual function of autophagy in breast cancer: A potent regulator of tumor progression and therapy response. Biomed Pharmacother 2023; 161:114546. [PMID: 36958191 DOI: 10.1016/j.biopha.2023.114546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
As a devastating disease, breast cancer has been responsible for decrease in life expectancy of females and its morbidity and mortality are high. Breast cancer is the most common tumor in females and its treatment has been based on employment of surgical resection, chemotherapy and radiotherapy. The changes in biological behavior of breast tumor relies on genomic and epigenetic mutations and depletions as well as dysregulation of molecular mechanisms that autophagy is among them. Autophagy function can be oncogenic in increasing tumorigenesis, and when it has pro-death function, it causes reduction in viability of tumor cells. The carcinogenic function of autophagy in breast tumor is an impediment towards effective therapy of patients, as it can cause drug resistance and radio-resistance. The important hallmarks of breast tumor such as glucose metabolism, proliferation, apoptosis and metastasis can be regulated by autophagy. Oncogenic autophagy can inhibit apoptosis, while it promotes stemness of breast tumor. Moreover, autophagy demonstrates interaction with tumor microenvironment components such as macrophages and its level can be regulated by anti-tumor compounds in breast tumor therapy. The reasons of considering autophagy in breast cancer therapy is its pleiotropic function, dual role (pro-survival and pro-death) and crosstalk with important molecular mechanisms such as apoptosis. Moreover, current review provides a pre-clinical and clinical evaluation of autophagy in breast tumor.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pegah Abbasi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
11
|
Sun Z, Xu Z, Yu Y, Xia S, Tuhlei B, Man T, Zhou B, Qin Y, Shang D. Effectiveness of an "online + in-person" hybrid model for an undergraduate molecular biology lab during COVID-19. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 51:155-163. [PMID: 36579716 DOI: 10.1002/bmb.21704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/27/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The COVID-19 outbreak has created turbulence and uncertainty into multiple aspects of life in countries around the world. In China, the pandemic continues to pose a great challenge to the nature of traditional in-class education in schools. Chinese education has faced the difficult decision of whether to resume in-person teaching in an unprecedented and time-pressured manner. To ensure the quality of teaching and learning during this time, this study aims to explore the effectiveness of an "online + in-person" hybrid teaching model with a new three-part approach to the hybrid teaching lab, where students prepare for the in-person lab using virtual simulated experiments and learning modules and debrief their learning afterwards online as well. This approach not only enhances the efficiency during the in-person lab but also strongly reinforces concepts and laboratory skills by providing a "practice run" before physically attending the lab. A total of 400 medical undergraduates from Dalian Medical University in China were recruited for this study. In an undergraduate molecular biology laboratory course, we observed 200 students in a hybrid teaching model. We evaluated the learning outcomes from the "online + in-person" hybrid teaching model with a questionnaire survey and assessed the quality of experiment execution, report writing, and group collaboration. Moreover, the 200 students from the hybrid group were evaluated during an annual science competition at the university and compared to 200 students from the competition cohort who had no experience with a hybrid learning model. The comparison data were analyzed using a student's t-test statistical analysis. The students in the hybrid learning group demonstrated a strong enthusiasm for the model, high amount of time utilizing the online system, and high scores on laboratory evaluation assignments. Approximately 98% of the hybrid learning students reported that they preferred mixed teaching to the traditional teaching mode, and all students scored above 96% on the online laboratory report. Teachers of the course observed that the hybrid group had a noticeably higher level of proficiency in lab skills compared to the previous students. At the Dalian Medical University annual science competition, where we compared our hybrid group to a traditional learning group, scores for both the objective and subjective items showed that the students instructed with the hybrid lab model had superior performance (p < 0.05). In the context of the COVID-19 pandemic, we developed a new three-part molecular biology laboratory course that strongly improved students' laboratory skills, knowledge retention, and enthusiasm for the course using online learning to improve their learning efficiency and expedite the in-person laboratory experience. We found that these students performed at a higher level in a combined theoretical/practical science competition compared to the students in traditional in-person lab courses. Additionally, our model subjectively fostered enthusiasm and excellence in both teachers and students. Further, cultivation of the students' independent learning and creative problem solving skills were emphasized. The exploration of an effective teaching model, such as the one described here, not only provides students with a solid foundation for their future medical studies and career development but also promotes more efficient in-person laboratory time.
Collapse
Affiliation(s)
- Zheng Sun
- Department of Institute (College) of Integrated Medicine, Dalian Medical University, Dalian, People's Republic of China
| | - Zihan Xu
- Department of Institute (College) of Integrated Medicine, Dalian Medical University, Dalian, People's Republic of China
| | - Yang Yu
- Foreign Languages Department, Dalian Medical University, Dalian, People's Republic of China
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Breanna Tuhlei
- Department of Family Medcine, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA
| | - Tengjun Man
- Department of Institute (College) of Integrated Medicine, Dalian Medical University, Dalian, People's Republic of China
| | - Bo Zhou
- Department of Institute (College) of Integrated Medicine, Dalian Medical University, Dalian, People's Republic of China
| | - Yuanhua Qin
- Basic Medicine College, Dalian Medical University, Dalian, People's Republic of China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
12
|
Shi L, Kan J, Zhuo L, Wang S, Chen S, Zhang B, Ke B. Bioinformatics identification of miR-514b-5p promotes NSCLC progression and induces PI3K/AKT and p38 pathways by targeting small glutamine-rich tetratricopeptide repeat-containing protein beta. FEBS J 2023; 290:1134-1150. [PMID: 36180981 DOI: 10.1111/febs.16639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/05/2022] [Accepted: 09/28/2022] [Indexed: 02/17/2023]
Abstract
Lung cancer is the most aggressive cancer with the highest mortality and incidence rates worldwide. MicroRNAs have been identified as potential targets for non-small cell lung cancer (NSCLC) treatment. However, the modulatory role of miR-514b-5p in NSCLC progression is little known. In the present study, miRNA expression datasets for NSCLC were downloaded from the Cancer Genome Atlas and Gene Ontology Omnibus databases. Gene expression was assessed using a quantitative real-time PCR, and western blot analysis and immunohistochemical staining was used to determine protein expression. Gain and loss of function experiments were performed to investigate the impact of miR-514b-5p and small glutamine-rich tetratricopeptide repeat-containing protein beta (SGTB) on cell proliferation and apoptosis. RNA immunoprecipitation and dual-luciferase assays were performed to analyse the target gene of miR-514b-5p. The biological roles of miR-514b-5p were lastly evaluated using nude mouse tumorigenicity assays in vivo. We found that miR-514b-5p was dramatically increased in NSCLC tissues and higher miR-514b-5p expression was associated with poorer overall survival in NSCLC patients. Furthermore, overexpression of miR-514b-5p promoted NSCLC cell growth and suppressed apoptosis by inducing the activation of the phosphatidylinositol-3-kinase (PI3K)/AKT and p38 signalling pathways. Mechanistically, dual-luciferase and the RNA immunoprecipitation results highlighted that SGTB was a target gene of miR-514b-5p. Moreover, overexpression of SGTB reduced cell division and promoted apoptosis in vitro through blocking the PI3K/AKT and p38 signalling pathways. Our findings indicated that miR-514b-5p contributes to carcinoma progression in NSCLC via the PI3K/AKT and p38 signalling pathways by targeting SGTB and this could be a promising diagnostic and therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Lin Shi
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jun Kan
- Department of VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Zhuo
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Siyun Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shaobing Chen
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Bei Zhang
- Department of VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bin Ke
- Department of VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
13
|
Luo T, Yu S, Ouyang J, Zeng F, Gao L, Huang S, Wang X. Identification of a apoptosis-related LncRNA signature to improve prognosis prediction and immunotherapy response in lung adenocarcinoma patients. Front Genet 2022; 13:946939. [PMID: 36171881 PMCID: PMC9510691 DOI: 10.3389/fgene.2022.946939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
Apoptosis is closely associated with the development of various cancers, including lung adenocarcinoma (LUAD). However, the prognostic value of apoptosis-related lncRNAs (ApoRLs) in LUAD has not been fully elucidated. In the present study, we screened 2, 960 ApoRLs by constructing a co-expression network of mRNAs-lncRNAs associated with apoptosis, and identified 421 ApoRLs that were differentially expressed between LUAD samples and normal lung samples. Sixteen differentially expressed apoptosis-related lncRNAs (DE-ApoRLs) with prognostic relevance to LUAD patients were screened using univariate Cox regression analysis. An apoptosis-related lncRNA signature (ApoRLSig ) containing 10 ApoRLs was constructed by applying the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression method, and all LUAD patients in the TCGA cohort were divided into high or low risk groups. Moreover, patients in the high-risk group had a worse prognosis (p < 0.05). When analyzed in conjunction with clinical features, we found ApoRLSig to be an independent predictor of LUAD patients and established a prognostic nomogram combining ApoRLSig and clinical features. Gene set enrichment analysis (GSEA) revealed that ApoRLSig is involved in many malignancy-associated immunomodulatory pathways. In addition, there were significant differences in the immune microenvironment and immune cells between the high-risk and low-risk groups. Further analysis revealed that the expression levels of most immune checkpoint genes (ICGs) were higher in the high-risk group, which suggested that the immunotherapy effect was better in the high-risk group than in the low-risk group. And we found that the high-risk group was also better than the low-risk group in terms of chemotherapy effect. In conclusion, we successfully constructed an ApoRLSig which could predict the prognosis of LUAD patients and provide a novel strategy for the antitumor treatment of LUAD patients.
Collapse
Affiliation(s)
- Ting Luo
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- School of Medicine, Jiujiang University, Jiujiang, Jiangxi, China
| | - Shiqun Yu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- School of Medicine, Jiujiang University, Jiujiang, Jiangxi, China
| | - Jin Ouyang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- School of Medicine, Jiujiang University, Jiujiang, Jiangxi, China
| | - Fanfan Zeng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- School of Medicine, Jiujiang University, Jiujiang, Jiangxi, China
| | - Liyun Gao
- School of Medicine, Jiujiang University, Jiujiang, Jiangxi, China
| | - Shaoxin Huang
- School of Medicine, Jiujiang University, Jiujiang, Jiangxi, China
| | - Xin Wang
- School of Medicine, Jiujiang University, Jiujiang, Jiangxi, China
- *Correspondence: Xin Wang,
| |
Collapse
|
14
|
A comprehensive analysis of avian lymphoid leukosis-like lymphoma transcriptomes including identification of LncRNAs and the expression profiles. PLoS One 2022; 17:e0272557. [PMID: 35939448 PMCID: PMC9359530 DOI: 10.1371/journal.pone.0272557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Avian lymphoid leukosis-like (LL-like) lymphoma has been observed in some experimental and commercial lines of chickens that are free of exogenous avian leukosis virus. Reported cases of avian lymphoid leukosis-like lymphoma incidences in the susceptible chickens are relatively low, but the apathogenic subgroup E avian leukosis virus (ALV-E) and the Marek’s disease vaccine, SB-1, significantly escalate the disease incidence in the susceptible chickens. However, the underlying mechanism of tumorigenesis is poorly understood. In this study, we bioinformatically analyzed the deep RNA sequences of 6 lymphoid leukosis-like lymphoma samples, collected from susceptible chickens post both ALV-E and SB-1 inoculation, and identified a total of 1,692 novel long non-coding RNAs (lncRNAs). Thirty-nine of those novel lncRNAs were detected with altered expression in the LL-like tumors. In addition, 13 lncRNAs whose neighboring genes also showed differentially expression and 2 conserved novel lncRNAs, XLOC_001407 and XLOC_022595, may have previously un-appreciated roles in tumor development in human. Furthermore, 14 lncRNAs, especially XLOC_004542, exhibited strong potential as competing endogenous RNAs via sponging miRNAs. The analysis also showed that ALV subgroup E viral gene Gag/Gag-pol and the MD vaccine SB-1 viral gene R-LORF1 and ORF413 were particularly detectable in the LL-like tumor samples. In addition, we discovered 982 novel lncRNAs that were absent in the current annotation of chicken genome and 39 of them were aberrantly expressed in the tumors. This is the first time that lncRNA signature is identified in avian lymphoid leukosis-like lymphoma and suggests the epigenetic factor, lncRNA, is involved with the avian lymphoid leukosis-like lymphoma formation and development in susceptible chickens. Further studies to elucidate the genetic and epigenetic mechanisms underlying the avian lymphoid leukosis-like lymphoma is indeed warranted.
Collapse
|
15
|
Su Y, Wang W, Meng X. Revealing the Roles of MOAP1 in Diseases: A Review. Cells 2022; 11:cells11050889. [PMID: 35269511 PMCID: PMC8909730 DOI: 10.3390/cells11050889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Modulator of apoptosis protein1 (MOAP1), also known as MAP1 and PNMA4, belongs to the PNMA gene family consisting of at least 15 genes located on different chromosomes. MOAP1 interacts with the BAX protein, one of the most important apoptosis regulators. Due to its critical role in a few of disease-associated pathways, MOAP1 is associated with many diseases such as cancers and neurological diseases. In this study, we introduced MOAP1 and its biological functions and reviewed the associations between MOAP1 and a few diseases including cancers, neurological diseases, and other diseases such as inflammation and heart diseases. We also explained possible biological mechanisms underlying the associations between MOAP1 and these diseases, and discussed a few future directions regarding MOAP1, especially its potential roles in neurodegenerative disorders. In summary, MOAP1 plays a critical role in the development and progression of cancers and neurological diseases by regulating a few genes related to cellular apoptosis such as BAX and RASSF1A and interacting with disease-associated miRNAs, including miR-25 and miR1228.
Collapse
|