1
|
Collins RRJ, Gee RRF, Sanchez MCH, Tozandehjani S, Bayat T, Breznik B, Lee AK, Peters ST, Connelly JP, Pruett-Miller SM, Roussel MF, Rakheja D, Tillman HS, Potts PR, Fon Tacer K. Melanoma antigens in pediatric medulloblastoma contribute to tumor heterogeneity and species-specificity of group 3 tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594201. [PMID: 38798351 PMCID: PMC11118370 DOI: 10.1101/2024.05.14.594201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Medulloblastoma (MB) is the most malignant childhood brain cancer. Group 3 MB subtype accounts for about 25% of MB diagnoses and is associated with the most unfavorable outcomes. Herein, we report that more than half of group 3 MB tumors express melanoma antigens (MAGEs), which are potential prognostic and therapeutic markers. MAGEs are tumor antigens, expressed in several types of adult cancers and associated with poorer prognosis and therapy resistance; however, their expression in pediatric cancers is mostly unknown. The aim of this study was to determine whether MAGEs are activated in pediatric MB. Methods To determine MAGE frequency in pediatric MB, we obtained formalin-fixed paraffin-embedded tissue (FFPE) samples of 34 patients, collected between 2008 - 2015, from the Children's Medical Center Dallas pathology archives and applied our validated reverse transcription quantitative PCR (RT-qPCR) assay to measure the relative expression of 23 MAGE cancer-testis antigen genes. To validate our data, we analyzed several published datasets from pediatric MB patients and patient-derived orthotopic xenografts, totaling 860 patients. We then examined how MAGE expression affects the growth and oncogenic potential of medulloblastoma cells by CRISPR-Cas9- and siRNA-mediated gene depletion. Results Our RT-qPCR analysis suggested that MAGEs were expressed in group 3/4 medulloblastoma. Further mining of bulk and single-cell RNA-sequencing datasets confirmed that 50-75% of group 3 tumors activate a subset of MAGE genes. Depletion of MAGEAs, B2, and Cs alter MB cell survival, viability, and clonogenic growth due to decreased proliferation and increased apoptosis. Conclusions These results indicate that targeting MAGEs in medulloblastoma may be a potential therapeutic option for group 3 medulloblastomas. Key Points Several Type I MAGE CTAs are expressed in >60% of group 3 MBs. Type I MAGEs affect MB cell proliferation and apoptosis. MAGEs are potential biomarkers and therapeutic targets for group 3 MBs. Importance of the Study This study is the first comprehensive analysis of all Type I MAGE CTAs ( MAGEA , -B , and -C subfamily members) in pediatric MBs. Our results show that more than 60% of group 3 MBs express MAGE genes, which are required for the viability and growth of cells in which they are expressed. Collectively, these data provide novel insights into the antigen landscape of pediatric MBs. The activation of MAGE genes in group 3 MBs presents potential stratifying and therapeutic options. Abstract Figure
Collapse
|
2
|
Messiaen J, Jacobs SA, De Smet F. The tumor micro-environment in pediatric glioma: friend or foe? Front Immunol 2023; 14:1227126. [PMID: 37901250 PMCID: PMC10611473 DOI: 10.3389/fimmu.2023.1227126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Brain tumors are the leading cause of morbidity and mortality related to cancer in children, where high-grade glioma harbor the worst prognosis. It has become obvious that pediatric glioma differs significantly from their adult counterparts, rendering extrapolations difficult. Curative options for several types of glioma are lacking, albeit ongoing research efforts and clinical trials. As already proven in the past, inter- and intratumoral heterogeneity plays an important role in the resistance to therapy and thus implicates morbidity and mortality for these patients. However, while less studied, the tumor micro-environment (TME) adds another level of heterogeneity. Knowledge gaps exist on how the TME interacts with the tumor cells and how the location of the various cell types in the TME influences tumor growth and the response to treatment. Some studies identified the presence of several (immune) cell types as prognostic factors, but often lack a deeper understanding of the underlying mechanisms, possibly leading to contradictory findings. Although the TME in pediatric glioma is regarded as "cold", several treatment options are emerging, with the TME being the primary target of treatment. Therefore, it is crucial to study the TME of pediatric glioma, so that the interactions between TME, tumoral cells and therapeutics can be better understood before, during and after treatment. In this review, we provide an overview of the available insights into the composition and role of the TME across different types of pediatric glioma. Moreover, where possible, we provide a framework on how a particular TME may influence responses to conventional- and/or immunotherapy.
Collapse
Affiliation(s)
- Julie Messiaen
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Sandra A. Jacobs
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Pediatric Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Pandey K, Wang SS, Mifsud NA, Faridi P, Davenport AJ, Webb AI, Sandow JJ, Ayala R, Monje M, Cross RS, Ramarathinam SH, Jenkins MR, Purcell AW. A combined immunopeptidomics, proteomics, and cell surface proteomics approach to identify immunotherapy targets for diffuse intrinsic pontine glioma. Front Oncol 2023; 13:1192448. [PMID: 37637064 PMCID: PMC10455951 DOI: 10.3389/fonc.2023.1192448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Diffuse intrinsic pontine glioma (DIPG), recently reclassified as a subtype of diffuse midline glioma, is a highly aggressive brainstem tumor affecting children and young adults, with no cure and a median survival of only 9 months. Conventional treatments are ineffective, highlighting the need for alternative therapeutic strategies such as cellular immunotherapy. However, identifying unique and tumor-specific cell surface antigens to target with chimeric antigen receptor (CAR) or T-cell receptor (TCR) therapies is challenging. Methods In this study, a multi-omics approach was used to interrogate patient-derived DIPG cell lines and to identify potential targets for immunotherapy. Results Through immunopeptidomics, a range of targetable peptide antigens from cancer testis and tumor-associated antigens as well as peptides derived from human endogenous retroviral elements were identified. Proteomics analysis also revealed upregulation of potential drug targets and cell surface proteins such as Cluster of differentiation 27 (CD276) B7 homolog 3 protein (B7H3), Interleukin 13 alpha receptor 2 (IL-13Rα2), Human Epidermal Growth Factor Receptor 3 (HER2), Ephrin Type-A Receptor 2 (EphA2), and Ephrin Type-A Receptor 3 (EphA3). Discussion The results of this study provide a valuable resource for the scientific community to accelerate immunotherapeutic approaches for DIPG. Identifying potential targets for CAR and TCR therapies could open up new avenues for treating this devastating disease.
Collapse
Affiliation(s)
- Kirti Pandey
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stacie S. Wang
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Children’s Cancer Centre, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Nicole A. Mifsud
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Pouya Faridi
- Monash Proteomics and Metabolomics Facility, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- School of Clinical Sciences, Department of Medicine, Monash University, Clayton, VIC, Australia
- Department of Medicine, Sub-Faculty of Clinical and Molecular Medicine, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Alexander J. Davenport
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Andrew I. Webb
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jarrod J. Sandow
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Rochelle Ayala
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Michelle Monje
- Department of Neurology and Neurological Sciences and Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
| | - Ryan S. Cross
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Sri H. Ramarathinam
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Misty R. Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- The Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- LaTrobe Institute for Molecular Science, LaTrobe University, Bundoora, VIC, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
4
|
Abballe L, Spinello Z, Antonacci C, Coppola L, Miele E, Catanzaro G, Miele E. Nanoparticles for Drug and Gene Delivery in Pediatric Brain Tumors' Cancer Stem Cells: Current Knowledge and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15020505. [PMID: 36839827 PMCID: PMC9962005 DOI: 10.3390/pharmaceutics15020505] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Primary malignant brain tumors are the most common solid neoplasm in childhood. Despite recent advances, many children affected by aggressive or metastatic brain tumors still present poor prognosis, therefore the development of more effective therapies is urgent. Cancer stem cells (CSCs) have been discovered and isolated in both pediatric and adult patients with brain tumors (e.g., medulloblastoma, gliomas and ependymoma). CSCs are a small clonal population of cancer cells responsible for brain tumor initiation, maintenance and progression, displaying resistance to conventional anticancer therapies. CSCs are characterized by a specific repertoire of surface markers and intracellular specific pathways. These unique features of CSCs biology offer the opportunity to build therapeutic approaches to specifically target these cells in the complex tumor bulk. Treatment of pediatric brain tumors with classical chemotherapeutic regimen poses challenges both for tumor location and for the presence of the blood-brain barrier (BBB). Lastly, the application of chemotherapy to a developing brain is followed by long-term sequelae, especially on cognitive abilities. Novel avenues are emerging in the therapeutic panorama taking advantage of nanomedicine. In this review we will summarize nanoparticle-based approaches and the efficacy that NPs have intrinsically demonstrated and how they are also decorated by biomolecules. Furthermore, we propose novel cargoes together with recent advances in nanoparticle design/synthesis with the final aim to specifically target the insidious CSCs population in the tumor bulk.
Collapse
Affiliation(s)
- Luana Abballe
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Zaira Spinello
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Celeste Antonacci
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Lucia Coppola
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Ermanno Miele
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0H3, UK
| | - Giuseppina Catanzaro
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence: (G.C.); (E.M.)
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Correspondence: (G.C.); (E.M.)
| |
Collapse
|
5
|
Del Baldo G, Del Bufalo F, Pinacchio C, Carai A, Quintarelli C, De Angelis B, Merli P, Cacchione A, Locatelli F, Mastronuzzi A. The peculiar challenge of bringing CAR-T cells into the brain: Perspectives in the clinical application to the treatment of pediatric central nervous system tumors. Front Immunol 2023; 14:1142597. [PMID: 37025994 PMCID: PMC10072260 DOI: 10.3389/fimmu.2023.1142597] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Childhood malignant brain tumors remain a significant cause of death in the pediatric population, despite the use of aggressive multimodal treatments. New therapeutic approaches are urgently needed for these patients in order to improve prognosis, while reducing side effects and long-term sequelae of the treatment. Immunotherapy is an attractive option and, in particular, the use of gene-modified T cells expressing a chimeric antigen receptor (CAR-T cells) represents a promising approach. Major hurdles in the clinical application of this approach in neuro-oncology, however, exist. The peculiar location of brain tumors leads to both a difficulty of access to the tumor mass, shielded by the blood-brain barrier (BBB), and to an increased risk of potentially life-threatening neurotoxicity, due to the primary location of the disease in the CNS and the low intracranial volume reserve. There are no unequivocal data on the best way of CAR-T cell administration. Multiple trials exploring the use of CD19 CAR-T cells for hematologic malignancies proved that genetically engineered T cells can cross the BBB, suggesting that systemically administered CAR-T cell can be used in the neuro-oncology setting. Intrathecal and intra-tumoral delivery can be easily managed with local implantable devices, suitable also for a more precise neuro-monitoring. The identification of specific approaches of neuro-monitoring is of utmost importance in these patients. In the present review, we highlight the most relevant potential challenges associated with the application of CAR-T cell therapy in pediatric brain cancers, focusing on the evaluation of the best route of delivery, the peculiar risk of neurotoxicity and the related neuro-monitoring.
Collapse
Affiliation(s)
- Giada Del Baldo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Del Bufalo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Claudia Pinacchio
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Concetta Quintarelli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Biagio De Angelis
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Pietro Merli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Antonella Cacchione
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
- *Correspondence: Angela Mastronuzzi,
| |
Collapse
|
6
|
Nguyen T, Mueller S, Malbari F. Review: Neurological Complications From Therapies for Pediatric Brain Tumors. Front Oncol 2022; 12:853034. [PMID: 35480100 PMCID: PMC9035987 DOI: 10.3389/fonc.2022.853034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Surgery, chemotherapy and radiation have been the mainstay of pediatric brain tumor treatment over the past decades. Recently, new treatment modalities have emerged for the management of pediatric brain tumors. These therapies range from novel radiotherapy techniques and targeted immunotherapies to checkpoint inhibitors and T cell transfer therapies. These treatments are currently investigated with the goal of improving survival and decreasing morbidity. However, compared to traditional therapies, these novel modalities are not as well elucidated and similarly has the potential to cause significant short and long-term sequelae, impacting quality of life. Treatment complications are commonly mediated through direct drug toxicity or vascular, infectious, or autoimmune mechanisms, ranging from immune effector cell associated neurotoxicity syndrome with CART-cells to neuropathy with checkpoint inhibitors. Addressing treatment-induced complications is the focus of new trials, specifically improving neurocognitive outcomes. The aim of this review is to explore the pathophysiology underlying treatment related neurologic side effects, highlight associated complications, and describe the future direction of brain tumor protocols. Increasing awareness of these neurologic complications from novel therapies underscores the need for quality-of-life metrics and considerations in clinical trials to decrease associated treatment-induced morbidity.
Collapse
Affiliation(s)
- Thien Nguyen
- Department of Pediatrics, University of San Francisco, San Francisco, CA, United States
- *Correspondence: Thien Nguyen,
| | - Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of San Francisco, San Francisco, CA, United States
| | - Fatema Malbari
- Division of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|