1
|
Andrew Awuah W, Shah MH, Tan JK, Ranganathan S, Sanker V, Darko K, Tenkorang PO, Adageba BB, Ahluwalia A, Shet V, Aderinto N, Kundu M, Abdul‐Rahman T, Atallah O. Immunotherapeutic advances in glioma management: The rise of vaccine-based approaches. CNS Neurosci Ther 2024; 30:e70013. [PMID: 39215399 PMCID: PMC11364516 DOI: 10.1111/cns.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Gliomas, particularly glioblastoma multiforme (GBM), are highly aggressive brain tumors that present significant challenges in oncology due to their rapid progression and resistance to conventional therapies. Despite advancements in treatment, the prognosis for patients with GBM remains poor, necessitating the exploration of novel therapeutic approaches. One such emerging strategy is the development of glioma vaccines, which aim to stimulate the immune system to target and destroy tumor cells. AIMS This review aims to provide a comprehensive evaluation of the current landscape of glioma vaccine development, analyzing the types of vaccines under investigation, the outcomes of clinical trials, and the challenges and opportunities associated with their implementation. The goal is to highlight the potential of glioma vaccines in advancing more effective and personalized treatments for glioma patients. MATERIALS AND METHODS This narrative review systematically assessed the role of glioma vaccines by including full-text articles published between 2000 and 2024 in English. Databases such as PubMed/MEDLINE, EMBASE, the Cochrane Library, and Scopus were searched using key terms like "glioma," "brain tumor," "glioblastoma," "vaccine," and "immunotherapy." The review incorporated both pre-clinical and clinical studies, including descriptive studies, animal-model studies, cohort studies, and observational studies. Exclusion criteria were applied to omit abstracts, case reports, posters, and non-peer-reviewed studies, ensuring the inclusion of high-quality evidence. RESULTS Clinical trials investigating various glioma vaccines, including peptide-based, DNA/RNA-based, whole-cell, and dendritic-cell vaccines, have shown promising results. These vaccines demonstrated potential in extending survival rates and managing adverse events in glioma patients. However, significant challenges remain, such as therapeutic resistance due to tumor heterogeneity and immune evasion mechanisms. Moreover, the lack of standardized guidelines for evaluating vaccine responses and issues related to ethical considerations, regulatory hurdles, and vaccine acceptance among patients further complicate the implementation of glioma vaccines. DISCUSSION Addressing the challenges associated with glioma vaccines involves exploring combination therapies, targeted approaches, and personalized medicine. Combining vaccines with traditional therapies like radiotherapy or chemotherapy may enhance efficacy by boosting the immune system's ability to fight tumor cells. Personalized vaccines tailored to individual patient profiles present an opportunity for improved outcomes. Furthermore, global collaboration and equitable distribution are critical for ensuring access to glioma vaccines, especially in low- and middle-income countries with limited healthcare resources CONCLUSION: Glioma vaccines represent a promising avenue in the fight against gliomas, offering hope for improving patient outcomes in a disease that is notoriously difficult to treat. Despite the challenges, continued research and the development of innovative strategies, including combination therapies and personalized approaches, are essential for overcoming current barriers and transforming the treatment landscape for glioma patients.
Collapse
Affiliation(s)
| | | | | | | | - Vivek Sanker
- Department of NeurosurgeryTrivandrum Medical CollegeTrivandrumKeralaIndia
| | - Kwadwo Darko
- Department of NeurosurgeryKorle Bu Teaching HospitalAccraGhana
| | | | - Bryan Badayelba Adageba
- Kwame Nkrumah University of Science and Technology School of Medicine and DentistryKumasiGhana
| | | | - Vallabh Shet
- Faculty of MedicineBangalore Medical College and Research InstituteBangaloreKarnatakaIndia
| | - Nicholas Aderinto
- Department of Internal MedicineLAUTECH Teaching HospitalOgbomosoNigeria
| | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM HospitalBhubaneswarOdishaIndia
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
2
|
Rauch P, Stefanits H, Aichholzer M, Serra C, Vorhauer D, Wagner H, Böhm P, Hartl S, Manakov I, Sonnberger M, Buckwar E, Ruiz-Navarro F, Heil K, Glöckel M, Oberndorfer J, Spiegl-Kreinecker S, Aufschnaiter-Hiessböck K, Weis S, Leibetseder A, Thomae W, Hauser T, Auer C, Katletz S, Gruber A, Gmeiner M. Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma. Sci Rep 2023; 13:9494. [PMID: 37302994 PMCID: PMC10258197 DOI: 10.1038/s41598-023-36298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
Determining the optimal course of treatment for low grade glioma (LGG) patients is challenging and frequently reliant on subjective judgment and limited scientific evidence. Our objective was to develop a comprehensive deep learning assisted radiomics model for assessing not only overall survival in LGG, but also the likelihood of future malignancy and glioma growth velocity. Thus, we retrospectively included 349 LGG patients to develop a prediction model using clinical, anatomical, and preoperative MRI data. Before performing radiomics analysis, a U2-model for glioma segmentation was utilized to prevent bias, yielding a mean whole tumor Dice score of 0.837. Overall survival and time to malignancy were estimated using Cox proportional hazard models. In a postoperative model, we derived a C-index of 0.82 (CI 0.79-0.86) for the training cohort over 10 years and 0.74 (Cl 0.64-0.84) for the test cohort. Preoperative models showed a C-index of 0.77 (Cl 0.73-0.82) for training and 0.67 (Cl 0.57-0.80) test sets. Our findings suggest that we can reliably predict the survival of a heterogeneous population of glioma patients in both preoperative and postoperative scenarios. Further, we demonstrate the utility of radiomics in predicting biological tumor activity, such as the time to malignancy and the LGG growth rate.
Collapse
Affiliation(s)
- P Rauch
- Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg Weg 15, 4020, Linz, Austria
- Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - H Stefanits
- Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg Weg 15, 4020, Linz, Austria.
- Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria.
| | - M Aichholzer
- Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg Weg 15, 4020, Linz, Austria
- Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - C Serra
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital, University of Zurich, Zurich, Switzerland
- Machine Intelligence in Clinical Neuroscience (MICN) Lab, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - D Vorhauer
- Institute of Statistics, Johannes Kepler University, Linz, Austria
| | - H Wagner
- Institute of Statistics, Johannes Kepler University, Linz, Austria
| | - P Böhm
- Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg Weg 15, 4020, Linz, Austria
- Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - S Hartl
- Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg Weg 15, 4020, Linz, Austria
- Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | | | - M Sonnberger
- Institute of Neuroradiology, Kepler University Hospital and Johannes Kepler University, Linz, Austria
| | - E Buckwar
- Institute of Stochastics, Johannes Kepler University, Linz, Austria
| | - F Ruiz-Navarro
- Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg Weg 15, 4020, Linz, Austria
- Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - K Heil
- Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg Weg 15, 4020, Linz, Austria
- Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - M Glöckel
- Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg Weg 15, 4020, Linz, Austria
- Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - J Oberndorfer
- Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg Weg 15, 4020, Linz, Austria
- Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - S Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg Weg 15, 4020, Linz, Austria
- Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - K Aufschnaiter-Hiessböck
- Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg Weg 15, 4020, Linz, Austria
- Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - S Weis
- Institute of Pathology and Neuropathology, Kepler University Hospital and Johannes Kepler University, Linz, Austria
| | - A Leibetseder
- Department of Neurology, Kepler University Hospital and Johannes Kepler University, Linz, Austria
| | - W Thomae
- Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg Weg 15, 4020, Linz, Austria
- Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - T Hauser
- Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg Weg 15, 4020, Linz, Austria
- Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - C Auer
- Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg Weg 15, 4020, Linz, Austria
- Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - S Katletz
- Department of Neurology, Kepler University Hospital and Johannes Kepler University, Linz, Austria
| | - A Gruber
- Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg Weg 15, 4020, Linz, Austria
- Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - M Gmeiner
- Department of Neurosurgery, Kepler University Hospital, Wagner-Jauregg Weg 15, 4020, Linz, Austria
- Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| |
Collapse
|
3
|
Duffau H. Oncological and functional neurosurgery: Perspectives for the decade regarding diffuse gliomas. Rev Neurol (Paris) 2023; 179:437-448. [PMID: 36907710 DOI: 10.1016/j.neurol.2023.01.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 03/12/2023]
Abstract
For decades, diffuse glioma (DG) studies mostly focused on oncological considerations, whereas functional outcomes received less attention. Currently, because overall survival has increased in DG, especially in low-grade glioma (overall survival > 15 years), quality of life including neurocognitive and behavioral aspects should be assessed and preserved more systematically, particularly regarding surgery. Indeed, early maximal tumor removal results in greater survival in both high-grade and low-grade gliomas, leading to propose "supra-marginal" resection, with excision of the peritumoral zone in diffuse neoplasms. To minimize functional risks while maximizing the extent of resection, traditional "tumor-mass resection" is replaced by "connectome-guided resection" conducted under awake mapping, taking into account inter-individual brain anatomo-functional variability. A better understanding of the dynamic interplay between DG progression and reactional neuroplastic mechanisms is critical to adapt a personalized multistage therapeutic strategy, with integration of functional neurooncological (re)operation(s) in a multimodal management scheme including repeated medical therapies. Because the therapeutic armamentarium remains limited, the aims of this paradigmatic shift are to predict one/several step(s) ahead glioma behavior, its modifications, and compensatory neural networks reconfiguration over time in order to optimize the onco-functional benefit of each treatment - either in isolation or in combination with others - in human beings bearing a chronic tumoral disease while enjoying an active familial and socio-professional life as close as possible to their expectations. Thus, new ecological endpoints such as return to work should be incorporated into future DG trials. "Preventive neurooncology" might also be envisioned, by proposing a screening policy to discover and treat incidental glioma earlier.
Collapse
Affiliation(s)
- H Duffau
- Department of Neurosurgery, Montpellier University Medical Center, Gui-de-Chauliac Hospital, 80, avenue Augustin-Fliche, 34295 Montpellier, France; Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", National Institute for Health and Medical Research (Inserm), U1191 Laboratory, Institute of Functional Genomics, University of Montpellier, 34091 Montpellier, France.
| |
Collapse
|
4
|
Rech F, Duffau H. Beyond Avoiding Hemiplegia after Glioma Surgery: The Need to Map Complex Movement in Awake Patient to Preserve Conation. Cancers (Basel) 2023; 15:cancers15051528. [PMID: 36900318 PMCID: PMC10001205 DOI: 10.3390/cancers15051528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Improving the onco-functional balance has always been a challenge in glioma surgery, especially regarding motor function. Given the importance of conation (i.e., the willingness which leads to action) in patient's quality of life, we propose here to review the evolution of its intraoperative assessment through a reminder of the increasing knowledge of its neural foundations-based upon a meta-networking organization at three levels. Historical preservation of the primary motor cortex and pyramidal pathway (first level), which was mostly dedicated to avoid hemiplegia, has nonetheless shown its limits to prevent the occurrence of long-term deficits regarding complex movement. Then, preservation of the movement control network (second level) has permitted to prevent such more subtle (but possibly disabling) deficits thanks to intraoperative mapping with direct electrostimulations in awake conditions. Finally, integrating movement control in a multitasking evaluation during awake surgery (third level) enabled to preserve movement volition in its highest and finest level according to patients' specific demands (e.g., to play instrument or to perform sports). Understanding these three levels of conation and its underlying cortico-subcortical neural basis is therefore critical to propose an individualized surgical strategy centered on patient's choice: this implies an increasingly use of awake mapping and cognitive monitoring regardless of the involved hemisphere. Moreover, this also pleads for a finer and systematic assessment of conation before, during and after glioma surgery as well as for a stronger integration of fundamental neurosciences into clinical practice.
Collapse
Affiliation(s)
- Fabien Rech
- Department of Neurosurgery, CHRU de Nancy, Université de Lorraine, F-54000 Nancy, France
- Le Centre de Recherche en Automatique de Nancy, Le Centre National de la Recherche Scientifique, Université de Lorraine, F-54000 Nancy, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295 Montpellier, France
- Team ‘Plasticity of Central Nervous System, Stem Cells and Glial Tumours’, INSERM U1191, Institute of Genomics of Montpellier, University of Montpellier, F-34295 Montpellier, France
- Correspondence:
| |
Collapse
|
5
|
Duffau H. A Personalized Longitudinal Strategy in Low-Grade Glioma Patients: Predicting Oncological and Neural Interindividual Variability and Its Changes over Years to Think One Step Ahead. J Pers Med 2022; 12:jpm12101621. [PMID: 36294760 PMCID: PMC9604939 DOI: 10.3390/jpm12101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Diffuse low-grade glioma (LGG) is a rare cerebral cancer, mostly involving young adults with an active life at diagnosis. If left untreated, LGG widely invades the brain and becomes malignant, generating neurological worsening and ultimately death. Early and repeat treatments for this incurable tumor, including maximal connectome-based surgical resection(s) in awake patients, enable postponement of malignant transformation while preserving quality of life owing to constant neural network reconfiguration. Due to considerable interindividual variability in terms of LGG course and consecutive cerebral reorganization, a multistage longitudinal strategy should be tailored accordingly in each patient. It is crucial to predict how the glioma will progress (changes in growth rate and pattern of migration, genetic mutation, etc.) and how the brain will adapt (changes in patterns of spatiotemporal redistribution, possible functional consequences such as epilepsy or cognitive decline, etc.). The goal is to anticipate therapeutic management, remaining one step ahead in order to select the optimal (re-)treatment(s) (some of them possibly kept in reserve), at the appropriate time(s) in the evolution of this chronic disease, before malignization and clinical worsening. Here, predictive tumoral and non-tumoral factors, and their ever-changing interactions, are reviewed to guide individual decisions in advance based on patient-specific markers, for the treatment of LGG.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av. Augustin Fliche, 34295 Montpellier, France; ; Tel.: +33-4-67-33-66-12; Fax: +33-4-67-33-69-12
- Team “Plasticity of Central Nervous System, Stem Cells and Glial Tumors”, National Institute for Health and Medical Research (INSERM), U1191 Laboratory, Institute of Functional Genomics, University of Montpellier, 34091 Montpellier, France
| |
Collapse
|
6
|
Ng S, Duffau H. Factors Associated With Long-term Survival in Women Who Get Pregnant After Surgery for WHO Grade II Glioma. Neurology 2022; 99:e89-e97. [PMID: 35410899 DOI: 10.1212/wnl.0000000000200523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/01/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Women with a WHO grade II glioma (GIIG) often question clinicians on the effects of pregnancy on their disease. Previous reports have indicated a higher risk of glioma progression during and after pregnancy. Here, the aim was to investigate post-pregnancy outcomes and predictive factors impacting overall survival in female patients who underwent GIIG surgery. METHODS Inclusion criteria were adult women who have been pregnant after a GIIG resection and with a stable oncological status at the time of pregnancy (no ongoing oncological treatment, no contrast enhancement, no debilitating clinical condition). Relevant cases were identified from a databank (1998-2021) of patients who underwent surgical resection for a histologically-confirmed GIIG in our department. RESULTS Among 345 GIIG women within their reproductive years (age<45y), 16 patients (4.6%, mean age at delivery: 30.9±5.1 years) were pregnant (twice in 5 cases). The mean interval between the last oncological treatment (surgery alone in 11 patients while followed by chemotherapy and/or radiotherapy in 5 patients) and pregnancy was 3.5 years (range 0.75-10 years). Two patients experienced seizures during pregnancy. The delivery was vaginal and uneventful in all cases but one (1 caesarean). All children had normal mental and physical development. The glioma behavior changed in 7 patients (43.7%), with an acceleration of the velocity of diameter expansion (VDE) and/or the occurrence of a contrast enhancement during or within the 3 months after pregnancy, resulting in medical treatment and/or reoperation in the early post-partum period in 7 cases. The median clinical follow-up from delivery was 5.3 years (range 1.25-11.6 years). Four other patients received delayed adjuvant therapy for glioma progression. Seven patients (43.7%) died at a median time from delivery of 3.9 years (range 1.25-5.9 years). Overall, the median survival from delivery was 5.75 years. Crucially, patients who underwent a complete surgical resection and patients with stable lesions before pregnancy lived longer (log rank, p=0.046 and p=0.0026, respectively). CONCLUSIONS Tumor residual volume and tumor speed growth are strong predictive factors conditioning post-pregnancy long-term survival in patients with GIIG. Identifying patients at risk is critical to provide relevant counsel to GIIG women with a desire for motherhood.
Collapse
Affiliation(s)
- Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Neuroplasticity, Stem Cells and Low-grade Gliomas," INSERM U1191, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Neuroplasticity, Stem Cells and Low-grade Gliomas," INSERM U1191, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| |
Collapse
|