1
|
Chen Y, Wu Z, Cen K, Guo Y, Jiang J. Development and verification of a novel risk model related to ubiquitination linked with prognosis and therapeutic response in clear cell renal cell carcinoma. Sci Rep 2024; 14:25651. [PMID: 39463392 PMCID: PMC11514285 DOI: 10.1038/s41598-024-75948-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Increasing evidence highlights the important role of ubiquitination in cancer. The objective of our study is to establish a reliable marker for predicting clinical outcomes and treatment responses in patients with clear cell renal cell carcinoma (ccRCC) using genes related to ubiquitination (URGs). The URGs subtypes were identified using consensus clustering based on TCGA-KIRC, and a signature containing the prognostic differentially expressed genes of the subtypes was determined using LASSO and Cox regression analysis. To demonstrate the strength of the signature, verification analyses were performed on both E-MTAB-1980 and TCGA-KIRC test datasets. We developed a nomogram to enhance the effectiveness of our predictive tool. Risk genes expression was determined through RT-qPCR. Six genes were combined to create the URGs signature, which had a highly correlated with patient prognosis in patients with ccRCC. A nomogram was developed based on the URGs signature and clinicopathological characteristics. We found that the predictive power was substantially greater than the other individual predictors. Moreover, the study on the immune microenvironment revealed significant variations in the levels of immune cells and the expression of immune checkpoint genes among the groups categorized as high-risk and low-risk. Furthermore, it was found that immunotherapy yielded better outcomes in cohorts with low risk. The URGs signature might serve as a novel and powerful prognosis biomarker and offer a momentous reference for individualized treatment for patients in ccRCC.
Collapse
Affiliation(s)
- Yingzhi Chen
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Zhixuan Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Kenan Cen
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Yangyang Guo
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Junhui Jiang
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China.
| |
Collapse
|
2
|
Wang H, Hu J, Zhou W, Qian A. Metabolic reprogramming in the pathogenesis and progression of nasopharyngeal carcinoma: molecular mechanisms and therapeutic implications. Am J Cancer Res 2024; 14:4049-4064. [PMID: 39267663 PMCID: PMC11387871 DOI: 10.62347/vyat9271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a unique head and neck cancer with a complex etiology involving genetic predispositions, environmental factors, and Epstein-Barr virus (EBV) infection. Despite progress in radiotherapy and chemotherapy, the prognosis for advanced NPC is still unfavorable, prompting the need for innovative therapeutic approaches. Metabolic reprogramming plays a crucial role in the development and progression of NPC, marked by substantial changes in glycolysis, lipid, and amino acid metabolism. These alterations aid tumor cell proliferation, survival under stress, and immune evasion, with features such as enhanced aerobic glycolysis (Warburg effect) and shifts in lipid and amino acid pathways. Oncogenic drivers like MYC, RAS, EGFR, and the loss of tumor suppressors such as TP53 and PTEN, along with key signaling pathways including mTOR, AMPK, and HIF-1α, orchestrate these metabolic changes. This review discusses the molecular mechanisms of metabolic reprogramming in NPC and outlines potential therapeutic targets within these pathways. Advances in metabolic imaging and biomarker discovery are also enhancing the precision of diagnostics and treatment monitoring, fostering personalized medicine in NPC treatment. This manuscript aims to provide a detailed overview of the current research and its implications for improving NPC management and patient outcomes through targeted metabolic therapies.
Collapse
Affiliation(s)
- Hongli Wang
- Department of Otolaryngology, The Affiliated People's Hospital of Ningbo University Ningbo, Zhejiang, China
| | - Jiandao Hu
- Department of Otolaryngology, The Affiliated People's Hospital of Ningbo University Ningbo, Zhejiang, China
| | - Weibang Zhou
- Department of Otolaryngology, The Affiliated People's Hospital of Ningbo University Ningbo, Zhejiang, China
| | - Aijuan Qian
- Department of Otolaryngology, The Affiliated People's Hospital of Ningbo University Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Liu H, Tang L, Gong S, Xiao T, Yang H, Gu W, Wang H, Chen P. USP7 inhibits the progression of nasopharyngeal carcinoma via promoting SPLUNC1-mediated M1 macrophage polarization through TRIM24. Cell Death Dis 2023; 14:852. [PMID: 38129408 PMCID: PMC10739934 DOI: 10.1038/s41419-023-06368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Reprogramming of macrophages toward an M1 phenotype is a novel strategy to induce anticancer immunity. However, the regulatory mechanisms of M1 macrophage polarization and its functional roles in nasopharyngeal carcinoma (NPC) progression need to be further explored. Here we found that SPLUNC1 was highly expressed and responsible for M1 macrophage polarization. JAK/STATs pathway activation was involved in SPLUNC1-mediated M1 macrophage polarization. Importantly, regulation of SPLUNC1 in macrophages affected CM-mediated influence on NPC cell proliferation and migration. Mechanistically, USP7 deubiquitinated and stabilized TRIM24, which promoted SPLUNC1 expression via recruitment of STAT3 in M1 macrophages. Depletion of TRIM24 inhibited M1 macrophage polarization, which facilitated NPC cell growth and migration. However, over-expression of USP7 exhibited the opposite results and counteracted the tumorigenic effect of TRIM24 silencing. Finally, the growth and metastasis of NPC cells in vivo were repressed by USP7-induced M1 macrophage polarization via modulating TRIM24/SPLUNC1 axis. USP7 delayed NPC progression via promoting macrophage polarization toward M1 through regulating TRIM24/SPLUNC1 pathway, providing evidence for the development of effective antitumor immunotherapies for NPC.
Collapse
Affiliation(s)
- Huai Liu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P. R. China
- Key Laboratory of Translational Radiation Oncology, Hunan Province; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P. R. China
| | - Ling Tang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P. R. China
- Key Laboratory of Translational Radiation Oncology, Hunan Province; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P. R. China
| | - Sha Gong
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P. R. China
| | - Tengfei Xiao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P. R. China
| | - Hongmin Yang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P. R. China
| | - Wangning Gu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P. R. China
| | - Hui Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P. R. China.
- Key Laboratory of Translational Radiation Oncology, Hunan Province; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Pan Chen
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| |
Collapse
|
4
|
Li GZ, Meng GX, Pan GQ, Zhang X, Yan LJ, Li RZ, Ding ZN, Tan SY, Wang DX, Tian BW, Yan YC, Dong ZR, Hong JG, Li T. MALAT1/ mir-1-3p mediated BRF2 expression promotes HCC progression via inhibiting the LKB1/AMPK signaling pathway. Cancer Cell Int 2023; 23:188. [PMID: 37653482 PMCID: PMC10472681 DOI: 10.1186/s12935-023-03034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND The long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been reported to play a vital role in the occurrence and development of various tumors. However, the underlying mechanism of MALAT1 in hepatocellular carcinoma (HCC) has not been thoroughly elucidated. METHODS The expression levels of MALAT1 in HCC tissues and different cell lines were detected by qRT-PCR. Antisense oligonucleotides (ASO)-MALAT1 transfected cells were used to explore the biological effects of MALAT1 in HCC cells by cell counting kit 8 (CCK-8), colony formation, transwell, wound healing, and flow cytometry analysis. Western blotting was performed to measure AMPK and apoptosis-related protein levels. Dual-luciferase reporter assay was performed to verify the relationship between MALAT1 and its specific targets. RESULTS We found that MALAT1 was upregulated in HCC, and MALAT1 knockdown in HCC cells inhibited cell proliferation, migration, and invasion and inhibited apoptosis in vitro. Further studies demonstrated that MALAT1 positively regulated the expression of transcription factor II B‑related factor 2 (BRF2), which was associated with tumor recurrence, large tumor size, and poor prognosis in HCC. Mechanistically, MALAT1 was found to act as a competitive endogenous RNA to sponge has-miR-1-3p, which upregulated BRF2 expression. Knockdown of BRF2 inhibited the progression of HCC by activating the LKB1/AMPK signaling pathway. Overexpression of BRF2 reversed the inhibitory effect of MALAT1 knockdown on HCC cell viability. Moreover, ASO targeting MALAT1 inhibited the growth of xenograft tumors. CONCLUSIONS Our results demonstrate a novel MALAT1/miR-1-3p/BRF2/LKB1/AMPK regulatory axis in HCC, which may provide new molecular therapeutic targets for HCC in the future.
Collapse
Affiliation(s)
- Guang-Zhen Li
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Guang-Xiao Meng
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Guo-Qiang Pan
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiao Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Rui-Zhe Li
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Si-Yu Tan
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Bao-Wen Tian
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Jian-Guo Hong
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| | - Tao Li
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| |
Collapse
|
5
|
Fukushi A, Kim HD, Chang YC, Kim CH. Revisited Metabolic Control and Reprogramming Cancers by Means of the Warburg Effect in Tumor Cells. Int J Mol Sci 2022; 23:ijms231710037. [PMID: 36077431 PMCID: PMC9456516 DOI: 10.3390/ijms231710037] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022] Open
Abstract
Aerobic glycolysis is an emerging hallmark of many human cancers, as cancer cells are defined as a “metabolically abnormal system”. Carbohydrates are metabolically reprogrammed by its metabolizing and catabolizing enzymes in such abnormal cancer cells. Normal cells acquire their energy from oxidative phosphorylation, while cancer cells acquire their energy from oxidative glycolysis, known as the “Warburg effect”. Energy–metabolic differences are easily found in the growth, invasion, immune escape and anti-tumor drug resistance of cancer cells. The glycolysis pathway is carried out in multiple enzymatic steps and yields two pyruvate molecules from one glucose (Glc) molecule by orchestral reaction of enzymes. Uncontrolled glycolysis or abnormally activated glycolysis is easily observed in the metabolism of cancer cells with enhanced levels of glycolytic proteins and enzymatic activities. In the “Warburg effect”, tumor cells utilize energy supplied from lactic acid-based fermentative glycolysis operated by glycolysis-specific enzymes of hexokinase (HK), keto-HK-A, Glc-6-phosphate isomerase, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase, phosphofructokinase (PFK), phosphor-Glc isomerase (PGI), fructose-bisphosphate aldolase, phosphoglycerate (PG) kinase (PGK)1, triose phosphate isomerase, PG mutase (PGAM), glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate kinase isozyme type M2 (PKM2), pyruvate dehydrogenase (PDH), PDH kinase and lactate dehydrogenase. They are related to glycolytic flux. The key enzymes involved in glycolysis are directly linked to oncogenesis and drug resistance. Among the metabolic enzymes, PKM2, PGK1, HK, keto-HK-A and nucleoside diphosphate kinase also have protein kinase activities. Because glycolysis-generated energy is not enough, the cancer cell-favored glycolysis to produce low ATP level seems to be non-efficient for cancer growth and self-protection. Thus, the Warburg effect is still an attractive phenomenon to understand the metabolic glycolysis favored in cancer. If the basic properties of the Warburg effect, including genetic mutations and signaling shifts are considered, anti-cancer therapeutic targets can be raised. Specific therapeutics targeting metabolic enzymes in aerobic glycolysis and hypoxic microenvironments have been developed to kill tumor cells. The present review deals with the tumor-specific Warburg effect with the revisited viewpoint of recent progress.
Collapse
Affiliation(s)
- Abekura Fukushi
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
| | - Hee-Do Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
| | - Yu-Chan Chang
- Department of Biomedicine Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (Y.-C.C.); (C.-H.K.); Fax: +82-31-290-7015 (C.-H.K.)
| | - Cheorl-Ho Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
- Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
- Correspondence: (Y.-C.C.); (C.-H.K.); Fax: +82-31-290-7015 (C.-H.K.)
| |
Collapse
|