1
|
Silva MLS. Lectin-modified drug delivery systems - Recent applications in the oncology field. Int J Pharm 2024; 665:124685. [PMID: 39260750 DOI: 10.1016/j.ijpharm.2024.124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Chemotherapy with cytotoxic drugs remains the core treatment for cancer but, due to the difficulty to find general and usable biochemical differences between cancer cells and normal cells, many of these drugs are associated with lack of specificity, resulting in side effects and collateral cytotoxicity that impair patients' adherence to therapy. Novel cancer treatments in which the cytotoxic effect is maximized while adverse effects are reduced can be implemented by developing targeted therapies that exploit the specific features of cancer cells, such as the typical expression of aberrant glycans. Modification of drug delivery systems with lectins is one of the strategies to implement targeted chemotherapies, as lectins are able to specifically recognize and bind to cancer-associated glycans expressed at the surface of cancer cells, guiding the drug treatment towards these cells and not affecting healthy ones. In this paper, recent advances on the development of lectin-modified drug delivery systems for targeted cancer treatments are thoroughly reviewed, with a focus on their properties and performance in diverse applications, as well as their main advantages and limitations. The synthesis and analytical characterization of the cited lectin-modified drug delivery systems is also briefly described. A comparison with free-drug treatments and with antibody-modified drug delivery systems is presented, emphasizing the advantages of lectin-modified drug delivery systems. Main constraints and potential challenges of lectin-modified drug delivery systems, including key difficulties for clinical translation of these systems, and the required developments in this area, are also signalled.
Collapse
Affiliation(s)
- Maria Luísa S Silva
- Centro de Estudos Globais, Universidade Aberta, Rua da Escola Politécnica 147, 1269-001 Lisboa, Portugal.
| |
Collapse
|
2
|
Khorami-Sarvestani S, Hanash SM, Fahrmann JF, León-Letelier RA, Katayama H. Glycosylation in cancer as a source of biomarkers. Expert Rev Proteomics 2024:1-21. [PMID: 39376081 DOI: 10.1080/14789450.2024.2409224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Glycosylation, the process of glycan synthesis and attachment to target molecules, is a crucial and common post-translational modification (PTM) in mammalian cells. It affects the protein's hydrophilicity, charge, solubility, structure, localization, function, and protection from proteolysis. Aberrant glycosylation in proteins can reveal new detection and therapeutic Glyco-biomarkers, which help to improve accurate early diagnosis and personalized treatment. This review underscores the pivotal role of glycans and glycoproteins as a source of biomarkers in human diseases, particularly cancer. AREAS COVERED This review delves into the implications of glycosylation, shedding light on its intricate roles in cancer-related cellular processes influencing biomarkers. It is underpinned by a thorough examination of literature up to June 2024 in PubMed, Scopus, and Google Scholar; concentrating on the terms: (Glycosylation[Title/Abstract]) OR (Glycan[Title/Abstract]) OR (glycoproteomics[Title/Abstract]) OR (Proteoglycans[Title/Abstract]) OR (Glycomarkers[Title/Abstract]) AND (Cancer[Title/Abstract]) AND ((Diagno*[Title/Abstract]) OR (Progno*[Title/Abstract])). EXPERT OPINION Glyco-biomarkers enhance early cancer detection, allow early intervention, and improve patient prognoses. However, the abundance and complex dynamic glycan structure may make their scientific and clinical application difficult. This exploration of glycosylation signatures in cancer biomarkers can provide a detailed view of cancer etiology and instill hope in the potential of glycosylation to revolutionize cancer research.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ricardo A León-Letelier
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Yang H, Lin Z, Wu B, Xu J, Tao SC, Zhou S. Deciphering disease through glycan codes: leveraging lectin microarrays for clinical insights. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1145-1155. [PMID: 39099413 PMCID: PMC11399442 DOI: 10.3724/abbs.2024123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 08/06/2024] Open
Abstract
Glycosylation, a crucial posttranslational modification, plays a significant role in numerous physiological and pathological processes. Lectin microarrays, which leverage the high specificity of lectins for sugar binding, are ideally suited for profiling the glycan spectra of diverse and complex biological samples. In this review, we explore the evolution of lectin detection technologies, as well as the applications and challenges of lectin microarrays in analyzing the glycome profiles of various clinical samples, including serum, saliva, tissues, sperm, and urine. This review not only emphasizes significant advancements in the high-throughput analysis of polysaccharides but also provides insight into the potential of lectin microarrays for diagnosing and managing diseases such as tumors, autoimmune diseases, and chronic inflammation. We aim to provide a clear, concise, and comprehensive overview of the use of lectin microarrays in clinical settings, thereby assisting researchers in conducting clinical studies in glycobiology.
Collapse
Affiliation(s)
- Hangzhou Yang
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Zihan Lin
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Bo Wu
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Jun Xu
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Sheng-Ce Tao
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Shumin Zhou
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People’s HospitalShanghai200233China
| |
Collapse
|
4
|
Jabeen I, Altemimi AB, Rabail R, Kafeel S, Shahid A, Inam-Ur-Raheem M, Mousavi Khaneghah A, Aadil RM. Exploring the astonishing beneficial effects of round gourd (Praecitrullus fistulosus) and plant lectins towards cancer: A comprehensive review. Int J Biol Macromol 2024; 271:132629. [PMID: 38815952 DOI: 10.1016/j.ijbiomac.2024.132629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Praecitrullus fistulosus, commonly known as round gourd or tinda, is a remarkable source of bioactive substances like polyphenols, antioxidants, carotene, magnesium, and vitamin C. It is considered one of the Cucurbitaceae family due to its medicinal features. Plant lectins are carbohydrate-binding proteins that can bind and identify the carbohydrate moieties upon cancerous cells demonstrated some anticancer potentials. Several plant lectins are helpful as cancer biomarkers because they can find cancer cells and contribute to cell death initiation via apoptosis and autophagy, suggesting the possible role of cancer-inhibiting pathways. Therefore, round gourd and lectins might be useful in the controlling of cancer. This study compiled the most recent scientific literature regarding the round gourd and numerous plant lectins, and the clinical trials of lectins exploring their effects on cancer were examined. Research according to the literature, round gourd, and lectins demonstrated pharmacological alterations not only in cancer but in many other disorders as well. Thus, clinical investigations proved the beneficial impacts of round gourd and lectins on cancer due to their antioxidants, anti-inflammatory, and anticarcinogenic properties. Further studies are required to fully comprehend the potential applications of these plant-derived compounds against cancer, as well as to identify the round gourd components and clarify their mode of action.
Collapse
Affiliation(s)
- Ifrah Jabeen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ammar B Altemimi
- Food Science Department, College of Agriculture, University of Basrah, Basrah 61004, Iraq; College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sadia Kafeel
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Arashi Shahid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Inam-Ur-Raheem
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University 191002, 9 Lomonosova Street, Saint Petersburg, Russia; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
5
|
Pinkeova A, Kosutova N, Jane E, Lorencova L, Bertokova A, Bertok T, Tkac J. Medical Relevance, State-of-the-Art and Perspectives of "Sweet Metacode" in Liquid Biopsy Approaches. Diagnostics (Basel) 2024; 14:713. [PMID: 38611626 PMCID: PMC11011756 DOI: 10.3390/diagnostics14070713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This review briefly introduces readers to an area where glycomics meets modern oncodiagnostics with a focus on the analysis of sialic acid (Neu5Ac)-terminated structures. We present the biochemical perspective of aberrant sialylation during tumourigenesis and its significance, as well as an analytical perspective on the detection of these structures using different approaches for diagnostic and therapeutic purposes. We also provide a comparison to other established liquid biopsy approaches, and we mathematically define an early-stage cancer based on the overall prognosis and effect of these approaches on the patient's quality of life. Finally, some barriers including regulations and quality of clinical validations data are discussed, and a perspective and major challenges in this area are summarised.
Collapse
Affiliation(s)
- Andrea Pinkeova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
- Glycanostics, Ltd., Kudlakova 7, 841 08 Bratislava, Slovakia;
| | - Natalia Kosutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
| | - Aniko Bertokova
- Glycanostics, Ltd., Kudlakova 7, 841 08 Bratislava, Slovakia;
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
- Glycanostics, Ltd., Kudlakova 7, 841 08 Bratislava, Slovakia;
| |
Collapse
|
6
|
Pinkeova A, Tomikova A, Bertokova A, Fabinyova E, Bartova R, Jane E, Hroncekova S, Sievert KD, Sokol R, Jirasko M, Kucera R, Eder IE, Horninger W, Klocker H, Ďubjaková P, Fillo J, Bertok T, Tkac J. Glycoprofiling of proteins as prostate cancer biomarkers: A multinational population study. PLoS One 2024; 19:e0300430. [PMID: 38498504 PMCID: PMC10947713 DOI: 10.1371/journal.pone.0300430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
The glycoprofiling of two proteins, the free form of the prostate-specific antigen (fPSA) and zinc-α-2-glycoprotein (ZA2G), was assessed to determine their suitability as prostate cancer (PCa) biomarkers. The glycoprofiling of proteins was performed by analysing changes in the glycan composition on fPSA and ZA2G using lectins (proteins that recognise glycans, i.e. complex carbohydrates). The specific glycoprofiling of the proteins was performed using magnetic beads (MBs) modified with horseradish peroxidase (HRP) and antibodies that selectively enriched fPSA or ZA2G from human serum samples. Subsequently, the antibody-captured glycoproteins were incubated on lectin-coated ELISA plates. In addition, a novel glycoprotein standard (GPS) was used to normalise the assay. The glycoprofiling of fPSA and ZA2G was performed in human serum samples obtained from men undergoing a prostate biopsy after an elevated serum PSA, and prostate cancer patients with or without prior therapy. The results are presented in the form of an ROC (Receiver Operating Curve). A DCA (Decision Curve Analysis) to evaluate the clinical performance and net benefit of fPSA glycan-based biomarkers was also performed. While the glycoprofiling of ZA2G showed little promise as a potential PCa biomarker, the glycoprofiling of fPSA would appear to have significant clinical potential. Hence, the GIA (Glycobiopsy ImmunoAssay) test integrates the glycoprofiling of fPSA (i.e. two glycan forms of fPSA). The GIA test could be used for early diagnoses of PCa (AUC = 0.83; n = 559 samples) with a potential for use in therapy-monitoring (AUC = 0.90; n = 176 samples). Moreover, the analysis of a subset of serum samples (n = 215) revealed that the GIA test (AUC = 0.81) outperformed the PHI (Prostate Health Index) test (AUC = 0.69) in discriminating between men with prostate cancer and those with benign serum PSA elevation.
Collapse
Affiliation(s)
- Andrea Pinkeova
- Glycanostics, Ltd., Bratislava, Slovak Republic
- Institute of Chemistry, Bratislava, Slovak Republic
| | | | | | | | | | - Eduard Jane
- Glycanostics, Ltd., Bratislava, Slovak Republic
- Institute of Chemistry, Bratislava, Slovak Republic
| | | | | | - Roman Sokol
- Private Urological Ambulance, Trencin, Slovak Republic
| | - Michal Jirasko
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Radek Kucera
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Immunochemistry Diagnostics, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Iris E. Eder
- Division of Experimental Urology, Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - Wolfgang Horninger
- Division of Experimental Urology, Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Division of Experimental Urology, Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Juraj Fillo
- University Hospital Bratislava, Bratislava, Slovakia
| | - Tomas Bertok
- Glycanostics, Ltd., Bratislava, Slovak Republic
- Institute of Chemistry, Bratislava, Slovak Republic
| | - Jan Tkac
- Glycanostics, Ltd., Bratislava, Slovak Republic
- Institute of Chemistry, Bratislava, Slovak Republic
| |
Collapse
|
7
|
Kosutova N, Lorencova L, Hires M, Jane E, Orovcik L, Kollar J, Kozics K, Gabelova A, Ukraintsev E, Rezek B, Kasak P, Cernocka H, Ostatna V, Blahutova J, Vikartovska A, Bertok T, Tkac J. Negative Charge-Carrying Glycans Attached to Exosomes as Novel Liquid Biopsy Marker. SENSORS (BASEL, SWITZERLAND) 2024; 24:1128. [PMID: 38400284 PMCID: PMC10892626 DOI: 10.3390/s24041128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Prostate cancer (PCa) is the second most common cancer. In this paper, the isolation and properties of exosomes as potential novel liquid biopsy markers for early PCa liquid biopsy diagnosis are investigated using two prostate human cell lines, i.e., benign (control) cell line RWPE1 and carcinoma cell line 22Rv1. Exosomes produced by both cell lines are characterised by various methods including nanoparticle-tracking analysis, dynamic light scattering, scanning electron microscopy and atomic force microscopy. In addition, surface plasmon resonance (SPR) is used to study three different receptors on the exosomal surface (CD63, CD81 and prostate-specific membrane antigen-PMSA), implementing monoclonal antibodies and identifying the type of glycans present on the surface of exosomes using lectins (glycan-recognising proteins). Electrochemical analysis is used to understand the interfacial properties of exosomes. The results indicate that cancerous exosomes are smaller, are produced at higher concentrations, and exhibit more nega tive zeta potential than the control exosomes. The SPR experiments confirm that negatively charged α-2,3- and α-2,6-sialic acid-containing glycans are found in greater abundance on carcinoma exosomes, whereas bisecting and branched glycans are more abundant in the control exosomes. The SPR results also show that a sandwich antibody/exosomes/lectins configuration could be constructed for effective glycoprofiling of exosomes as a novel liquid biopsy marker.
Collapse
Affiliation(s)
- Natalia Kosutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Lubomir Orovcik
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dubravska cesta 9/6319, 845 13 Bratislava, Slovakia
| | - Jozef Kollar
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | - Katarina Kozics
- Biomedical Research Centre, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia (A.G.)
| | - Alena Gabelova
- Biomedical Research Centre, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia (A.G.)
| | - Egor Ukraintsev
- Department of Physics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27 Prague, Czech Republic; (E.U.); (B.R.)
| | - Bohuslav Rezek
- Department of Physics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27 Prague, Czech Republic; (E.U.); (B.R.)
| | - Peter Kasak
- Centre for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Hana Cernocka
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61200 Brno, Czech Republic; (H.C.)
| | - Veronika Ostatna
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61200 Brno, Czech Republic; (H.C.)
| | - Jana Blahutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Alica Vikartovska
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| |
Collapse
|
8
|
Choi Y, Akyildiz K, Seong J, Lee Y, Jeong E, Park JS, Lee DH, Kim K, Koo HJ, Choi J. Dielectrophoretic Capture of Cancer-Derived Small-Extracellular-Vesicle-Bound Janus Nanoparticles via Lectin-Glycan Interaction. Adv Healthc Mater 2024; 13:e2302313. [PMID: 38124514 DOI: 10.1002/adhm.202302313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Glycosylation is closely related to cellular metabolism and disease progression. In particular, glycan levels in cancer cells and tissues increase during cancer progression. This upregulation of glycosylation in cancer cells may provide a basis for the development of new biomarkers for the targeting and diagnosis of specific cancers. Here, they developed a detection technology for pancreatic cancer cell-derived small extracellular vesicles (PC-sEVs) based on lectin-glycan interactions. Lectins specific for sialic acids are conjugated to Janus nanoparticles to induce interactions with PC-sEVs in a dielectrophoretic (DEP) system. PC-sEVs are selectively bound to the lectin-conjugated Janus nanoparticles (lectin-JNPs) with an affinity comparable to that of conventionally used carbohydrate antigen 19-9 (CA19-9) antibodies. Furthermore, sEVs-bound Lectin-JNPs (sEVs-Lec-JNPs) are manipulated between two electrodes to which an AC signal is applied for DEP capture. In addition, the proposed DEP system can be used to trap the sEVs-Lec-JNP on the electrodes. Their results, which are confirmed by lectin-JNPs using the proposed DEP system followed by target gene analysis, provide a basis for the development of a new early diagnostic marker based on the glycan characteristics of PC-sEVs. In turn, these novel detection methods could overcome the shortcomings of commercially available pancreatic cancer detection techniques.
Collapse
Affiliation(s)
- Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul, 06974, Republic of Korea
| | - Kubra Akyildiz
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Jihyun Seong
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yangwoo Lee
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Eunseo Jeong
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul, 06974, Republic of Korea
| | - Jin-Seok Park
- Department of Internal Medicine, Inha University School of Medicine, Incheon, 22212, Republic of Korea
| | - Don Haeng Lee
- Department of Internal Medicine, Inha University School of Medicine, Incheon, 22212, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hyung-Jun Koo
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul, 06974, Republic of Korea
| |
Collapse
|
9
|
Vrablova V, Kosutova N, Blsakova A, Bertokova A, Kasak P, Bertok T, Tkac J. Glycosylation in extracellular vesicles: Isolation, characterization, composition, analysis and clinical applications. Biotechnol Adv 2023; 67:108196. [PMID: 37307942 DOI: 10.1016/j.biotechadv.2023.108196] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
This review provides a comprehensive overview of our understanding of the role that glycans play in the formation, loading and release of extracellular vesicles (EVs). The capture of EVs (typically with a size of 100-200 nm) is described, including approaches based on glycan recognition with glycan-based analysis offering highly sensitive detection of EVs. Furthermore, detailed information is provided about the use of EV glycans and glycan processing enzymes as potential biomarkers, therapeutic targets or tools applied for regenerative medicine. The review also provides a short introduction into advanced methods for the characterization of EVs, new insights into the biomolecular corona covering EVs and bioanalytical tools available for glycan analysis.
Collapse
Affiliation(s)
- Veronika Vrablova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Natalia Kosutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Anna Blsakova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Aniko Bertokova
- Glycanostics sro., Kudlakova 7, Bratislava 841 01, Slovak Republic
| | - Peter Kasak
- Centre for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic; Glycanostics sro., Kudlakova 7, Bratislava 841 01, Slovak Republic
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic; Glycanostics sro., Kudlakova 7, Bratislava 841 01, Slovak Republic.
| |
Collapse
|
10
|
Silva MLS. Capitalizing glycomic changes for improved biomarker-based cancer diagnostics. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:366-395. [PMID: 37455827 PMCID: PMC10344901 DOI: 10.37349/etat.2023.00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/24/2023] [Indexed: 07/18/2023] Open
Abstract
Cancer serum biomarkers are valuable or even indispensable for cancer diagnostics and/or monitoring and, currently, many cancer serum markers are routinely used in the clinic. Most of those markers are glycoproteins, carrying cancer-specific glycan structures that can provide extra-information for cancer monitoring. Nonetheless, in the majority of cases, this differential feature is not exploited and the corresponding analytical assays detect only the protein amount, disregarding the analysis of the aberrant glycoform. Two exceptions to this trend are the biomarkers α-fetoprotein (AFP) and cancer antigen 19-9 (CA19-9), which are clinically monitored for their cancer-related glycan changes, and only the AFP assay includes quantification of both the protein amount and the altered glycoform. This narrative review demonstrates, through several examples, the advantages of the combined quantification of protein cancer biomarkers and the respective glycoform analysis, which enable to yield the maximum information and overcome the weaknesses of each individual analysis. This strategy allows to achieve higher sensitivity and specificity in the detection of cancer, enhancing the diagnostic power of biomarker-based cancer detection tests.
Collapse
Affiliation(s)
- Maria Luísa S. Silva
- Unidade de Aprendizagem ao Longo da Vida, Universidade Aberta, 1269-001 Lisboa, Portugal
| |
Collapse
|
11
|
Moran AB, Elgood-Hunt G, van der Burgt YEM, Wuhrer M, Mesker WE, Tollenaar RAEM, Spencer DIR, Lageveen-Kammeijer GSM. Serum N-Glycosylation RPLC-FD-MS Assay to Assess Colorectal Cancer Surgical Interventions. Biomolecules 2023; 13:896. [PMID: 37371476 DOI: 10.3390/biom13060896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
A newly developed analytical strategy was applied to profile the total serum N-glycome of 64 colorectal cancer (CRC) patients before and after surgical intervention. In this cohort, it was previously found that serum N-glycome alterations in CRC were associated with patient survival. Here, fluorescent labeling of serum N-glycans was applied using procainamide and followed by sialic acid derivatization specific for α2,6- and α2,3-linkage types via ethyl esterification and amidation, respectively. This strategy allowed efficient separation of specific positional isomers on reversed-phase liquid chromatography-fluorescence detection-mass spectrometry (RPLC-FD-MS) and complemented the previous glycomics data based on matrix-assisted laser desorption/ionization (MALDI)-MS that did not include such separations. The results from comparing pre-operative CRC to post-operative samples were in agreement with studies that identified a decrease in di-antennary structures with core fucosylation and an increase in sialylated tri- and tetra-antennary N-glycans in CRC patient sera. Pre-operative abundances of N-glycans showed good performance for the classification of adenocarcinoma and led to the revisit of the previous MALDI-MS dataset with regard to histological and clinical data. This strategy has the potential to monitor patient profiles before, during, and after clinical events such as treatment, therapy, or surgery and should also be further explored.
Collapse
Affiliation(s)
- Alan B Moran
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Ludger Ltd., Culham Science Centre, Abingdon OX14 3EB, UK
| | | | - Yuri E M van der Burgt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Wilma E Mesker
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | - Guinevere S M Lageveen-Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
12
|
van der Burgt Y, Wuhrer M. The role of clinical glyco(proteo)mics in precision medicine. Mol Cell Proteomics 2023:100565. [PMID: 37169080 DOI: 10.1016/j.mcpro.2023.100565] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
Glycoproteomics reveals site-specific O- and N-glycosylation that may influence protein properties including binding, activity and half-life. The increasingly mature toolbox with glycomic- and glycoproteomic strategies is applied for the development of biopharmaceuticals and discovery and clinical evaluation of glycobiomarkers in various disease fields. Notwithstanding the contributions of glycoscience in identifying new drug targets, the current report is focused on the biomarker modality that is of interest for diagnostic and monitoring purposes. To this end it is noted that the identification of biomarkers has received more attention than corresponding quantification. Most analytical methods are very efficient in detecting large numbers of analytes but developments to accurately quantify these have so far been limited. In this perspective a parallel is made with earlier proposed tiers for protein quantification using mass spectrometry. Moreover, the foreseen reporting of multimarker readouts is discussed to describe an individual's health or disease state and their role in clinical decision-making. The potential of longitudinal sampling and monitoring of glycomic features for diagnosis and treatment monitoring is emphasized. Finally, different strategies that address quantification of a multimarker panel will be discussed.
Collapse
Affiliation(s)
- Yuri van der Burgt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Chen G, Yang L, Liu G, Zhu Y, Yang F, Dong X, Xu F, Zhu F, Cao C, Zhong D, Li S, Zhang H, Li B. Research progress in protein microarrays: Focussing on cancer research. Proteomics Clin Appl 2023; 17:e2200036. [PMID: 36316278 DOI: 10.1002/prca.202200036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 01/22/2023]
Abstract
Although several effective treatment modalities have been developed for cancers, the morbidity and mortality associated with cancer continues to increase every year. As one of the most exciting emerging technologies, protein microarrays represent a powerful tool in the field of cancer research because of their advantages such as high throughput, small sample usage, more flexibility, high sensitivity and direct readout of results. In this review, we focus on the research progress in four types of protein microarrays (proteome microarray, antibody microarray, lectin microarray and reversed protein array) with emphasis on their application in cancer research. Finally, we discuss the current challenges faced by protein microarrays and directions for future developments. We firmly believe that this novel systems biology research tool holds immense potential in cancer research and will become an irreplaceable tool in this field.
Collapse
Affiliation(s)
- Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Yunfan Zhu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Feng Zhu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.,Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Sarhadi VK, Armengol G. Molecular Biomarkers in Cancer. Biomolecules 2022; 12:1021. [PMID: 35892331 PMCID: PMC9331210 DOI: 10.3390/biom12081021] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Molecular cancer biomarkers are any measurable molecular indicator of risk of cancer, occurrence of cancer, or patient outcome. They may include germline or somatic genetic variants, epigenetic signatures, transcriptional changes, and proteomic signatures. These indicators are based on biomolecules, such as nucleic acids and proteins, that can be detected in samples obtained from tissues through tumor biopsy or, more easily and non-invasively, from blood (or serum or plasma), saliva, buccal swabs, stool, urine, etc. Detection technologies have advanced tremendously over the last decades, including techniques such as next-generation sequencing, nanotechnology, or methods to study circulating tumor DNA/RNA or exosomes. Clinical applications of biomarkers are extensive. They can be used as tools for cancer risk assessment, screening and early detection of cancer, accurate diagnosis, patient prognosis, prediction of response to therapy, and cancer surveillance and monitoring response. Therefore, they can help to optimize making decisions in clinical practice. Moreover, precision oncology is needed for newly developed targeted therapies, as they are functional only in patients with specific cancer genetic mutations, and biomarkers are the tools used for the identification of these subsets of patients. Improvement in the field of cancer biomarkers is, however, needed to overcome the scientific challenge of developing new biomarkers with greater sensitivity, specificity, and positive predictive value.
Collapse
Affiliation(s)
- Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| | - Gemma Armengol
- Department of Animal Biology, Plant Biology, and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|