1
|
LI YI, WANG TIANYI, DING HAORAN, ZHUANG SHIYONG, DAI XIAOBO, YAN BING. Exosomal microRNA let-7c-5p enhances cell malignant characteristics by inhibiting TAGLN in oral cancer. Oncol Res 2024; 32:1623-1635. [PMID: 39308508 PMCID: PMC11413824 DOI: 10.32604/or.2024.048191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
Background Oral cancer, a malignancy that is prevalent worldwide, is often diagnosed at an advanced stage. MicroRNAs (miRNAs) in circulating exosomes have emerged as promising cancer biomarkers. The role of miRNA let-7c-5p in oral cancer remains underexplored, and its potential involvement in tumorigenesis warrants comprehensive investigation. Methods Serum samples from 30 patients with oral cancer and 20 healthy controls were used to isolate exosomes and quantify their RNA content. Isolation of the exosomes was confirmed through transmission electron microscopy. Quantitative PCR was used to assess the miRNA profiles. The effects of let-7c-5p and TAGLN overexpression on oral cancer cell viability, migration, and invasion were analyzed via CCK-8 and Transwell assays. Moreover, we conducted mRNA sequencing of exosomal RNA from exosomes overexpressing let-7c-5p to delineate the gene expression profile and identify potential let-7c-5p target genes. Results let-7c-5p was upregulated in serum-derived exosomes of patients with oral cancer. Overexpression of let-7c-5p in the TCA8113 and CAL-27 cell lines enhanced their proliferative, migratory, and invasive capacities, and overexpression of let-7c-5p cell-derived exosomes promoted oral cancer cell invasiveness. Exosomal mRNA sequencing revealed 2,551 differentially expressed genes between control cell-derived exosomes and overexpressed let-7c-5p cell-derived exosomes. We further identified TAGLN as a direct target of let-7c-5p, which has been implicated in modulating the oncogenic potential of oral cancer cells. Overexpression of TAGLN reverses the promoting role of let-7c-5p on oral cancer cells. Conclusion Our findings highlight the role of exosomal let-7c-5p in enhancing oral cancer cell aggressiveness by downregulating TAGLN expression, highlighting its potential as a diagnostic and therapeutic strategy.
Collapse
Affiliation(s)
- YI LI
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - TIANYI WANG
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - HAORAN DING
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - SHIYONG ZHUANG
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - XIAOBO DAI
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - BING YAN
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Frontier Innovation Center for Dental Medicine Plus, Chengdu, 610041, China
| |
Collapse
|
2
|
Zhou X, Yan Y, Shen Y, Xu M, Xu W. Exosomes: Emerging Insights into the Progression of Pancreatic Cancer. Int J Biol Sci 2024; 20:4098-4113. [PMID: 39113699 PMCID: PMC11302877 DOI: 10.7150/ijbs.97076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Pancreatic cancer is a very aggressive and fatal malignancy with few therapeutic choices and a poor prognosis. Understanding the molecular pathways that drive its growth is critical for developing effective therapeutic strategies. Exosomes, small extracellular vesicles secreted by numerous cell types, have recently emerged as essential intercellular communication mediators, with implications for tumor growth and metastasis. In this article, we present a review of current knowledge about exosomes and their role in pancreatic cancer progression We discuss the biogenesis and characteristics of exosomes, as well as their cargo and functional significance in tumor growth, immune evasion, angiogenesis, invasion, and metastasis. We further emphasize the potential of exosomes as diagnostic biomarkers and therapeutic targets for pancreatic cancer. Finally, we discuss the challenges and future perspectives in using exosomes to improve patient outcomes in pancreatic cancer.
Collapse
Affiliation(s)
- Xulin Zhou
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213000, China
| | - Ye Shen
- Department of Hepatobiliary Pancreas Surgery, Aoyang Hospital Affiliated to Jiangsu University, Suzhou, 215000, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Wenrong Xu
- Jiangsu University School of Medicine, Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
3
|
Qin C, Li T, Lin C, Zhao B, Li Z, Zhao Y, Wang W. The systematic role of pancreatic cancer exosomes: distant communication, liquid biopsy and future therapy. Cancer Cell Int 2024; 24:264. [PMID: 39054529 PMCID: PMC11271018 DOI: 10.1186/s12935-024-03456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Pancreatic cancer remains one of the most lethal diseases worldwide. Cancer-derived exosomes, benefiting from the protective role of the lipid membrane, exhibit remarkable stability in the circulatory system. These exosomes, released by tumor microenvironment, contain various biomolecules such as proteins, RNAs, and lipids that plays a pivotal role in mediating distant communication between the local pancreatic tumor and other organs or tissues. They facilitate the transfer of oncogenic factors to distant sites, contributing to the compromised body immune system, distant metastasis, diabetes, cachexia, and promoting a microenvironment conducive to tumor growth and metastasis in pancreatic cancer patients. Beyond their intrinsic roles, circulating exosomes in peripheral blood can be detected to facilitate accurate liquid biopsy. This approach offers a novel and promising method for the diagnosis and management of pancreatic cancer. Consequently, circulating exosomes are not only crucial mediators of systemic cell-cell communication during pancreatic cancer progression but also hold great potential as precise tools for pancreatic cancer management and treatment. Exosome-based liquid biopsy and therapy represent promising advancements in the diagnosis and treatment of pancreatic cancer. Exosomes can serve as drug delivery vehicles, enhancing the targeting and efficacy of anticancer treatments, modulating the immune system, and facilitating gene editing to suppress tumor growth. Ongoing research focuses on biomarker identification, drug delivery systems, and clinical trials to validate the safety and efficacy of exosome-based therapies, offering new possibilities for early diagnosis and precision treatment in pancreatic cancer. Leveraging the therapeutic potential of exosomes, including their ability to deliver targeted drugs and modulate immune responses, opens new avenues for innovative treatment strategies.
Collapse
Affiliation(s)
- Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Lin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bangbo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeru Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yutong Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Roy JW, Wajnberg G, Ouellette A, Boucher JE, Lacroix J, Chacko S, Ghosh A, Ouellette RJ, Lewis SM. Small RNA sequencing analysis of peptide-affinity isolated plasma extracellular vesicles distinguishes pancreatic cancer patients from non-affected individuals. Sci Rep 2023; 13:9251. [PMID: 37286718 DOI: 10.1038/s41598-023-36370-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a high fatality rate, mainly due to its asymptomatic nature until late-stage disease and therefore delayed diagnosis that leads to a lack of timely treatment intervention. Consequently, there is a significant need for better methods to screen populations that are at high risk of developing PDAC. Such advances would result in earlier diagnosis, more treatment options, and ultimately better outcomes for patients. Several recent studies have applied the concept of liquid biopsy, which is the sampling of a biofluid (such as blood plasma) for the presence of disease biomarkers, to develop screening approaches for PDAC; several of these studies have focused on analysis of extracellular vesicles (EVs) and their cargoes. While these studies have identified many potential biomarkers for PDAC that are present within EVs, their application to clinical practice is hindered by the lack of a robust, reproducible method for EV isolation and analysis that is amenable to a clinical setting. Our previous research has shown that the Vn96 synthetic peptide is indeed a robust and reproducible method for EV isolation that has the potential to be used in a clinical setting. We have therefore chosen to investigate the utility of the Vn96 synthetic peptide for this isolation of EVs from human plasma and the subsequent detection of small RNA biomarkers of PDAC by Next-generation sequencing (NGS) analysis. We find that analysis of small RNA from Vn96-isolated EVs permits the discrimination of PDAC patients from non-affected individuals. Moreover, analyses of all small RNA species, miRNAs, and lncRNA fragments are most effective at segregating PDAC patients from non-affected individuals. Several of the identified small RNA biomarkers have been previously associated with and/or characterized in PDAC, indicating the validity of our findings, whereas other identified small RNA biomarkers may have novel roles in PDAC or cancer in general. Overall, our results provide a basis for a clinically-amendable detection and/or screening strategy for PDAC using a liquid biopsy approach that relies on Vn96-mediated isolation of EVs from plasma.
Collapse
Affiliation(s)
- Jeremy W Roy
- Atlantic Cancer Research Institute, Moncton, NB, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | | | | | | | - Simi Chacko
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Anirban Ghosh
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Rodney J Ouellette
- Atlantic Cancer Research Institute, Moncton, NB, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB, Canada
| | - Stephen M Lewis
- Atlantic Cancer Research Institute, Moncton, NB, Canada.
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada.
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.
| |
Collapse
|
5
|
Gu Y, Hua Q, Li Z, Zhang X, Lou C, Zhang Y, Wang W, Cai P, Zhao J. Diagnostic value of combining preoperative inflammatory markers ratios with CA199 for patients with early-stage pancreatic cancer. BMC Cancer 2023; 23:227. [PMID: 36899319 PMCID: PMC9999638 DOI: 10.1186/s12885-023-10653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND An early diagnosis of pancreatic cancer (PC) is extremely difficult because of the lack of sensitive liquid biopsy methods and effective biomarkers. We attempted to evaluate whether circulating inflammatory marker could complement CA199 for the detection of early-stage PC. METHODS We enrolled 430 patients with early-stage PC, 287 patients with other pancreatic tumors (OPT), and 401 healthy controls (HC). The patients and HC were randomly divided into a training set (n = 872) and two testing sets (n1 = 218, n2 = 28). The receiver operating characteristic (ROC) curves were investigated to evaluate the diagnostic performance of circulating inflammatory markers ratios, CA199, and combinations of the markers ratios in the training set, which would then be validated in the two testing sets. RESULTS Circulating fibrinogen, neutrophils, and monocytes in patients with PC were significantly higher while circulating albumin, prealbumin, lymphocytes, and platelets of patients with PC were significantly lower compared to those of HC and OPT (all P < 0.05). The fibrinogen-to-albumin (FAR), fibrinogen-to-prealbumin (FPR), neutrophil-to-lymphocyte (NLR), platelet-to-lymphocyte (PLR), monocyte-to-lymphocyte (MLR), and fibrinogen-to-lymphocyte (FLR) ratios were significantly higher while the prognostic nutrition index values (PNI) were lower in patients with PC than in HC and OPT (all P < 0.05). Combining the FAR, FPR, and FLR with CA199 exhibited the best diagnostic value for distinguishing patients with early-stage PC from HC with an area under the curve (AUC) of 0.964, and for distinguishing patients with early-stage PC from OPT with an AUC of 0.924 in the training sets. In the testing set, compared with HC, the combination markers had powerful efficiency for PC with an AUC 0.947 and AUC 0.942 when comparing PC with OPT. The AUC was 0.915 for the combination of CA199, FAR, FPR, and FLR for differentiating between patients with pancreatic head cancer (PHC) and other pancreatic head tumors (OPHT), and 0.894 for differentiating between patients with pancreatic body and tail cancer (PBTC) and other pancreatic body and tail tumors (OPBTT). CONCLUSION A combination of FAR, FPR, FLR, and CA199 may serve as a potential non-invasive biomarker for differentiating early-stage PC from HC and OPT, especially early-stage PHC.
Collapse
Affiliation(s)
- Yuanlong Gu
- Department of Interventional Oncology, Municipal Hospital Affiliated to Taizhou University, Taizhou, China.,Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qianjin Hua
- Department of Interventional Oncology, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Zhipeng Li
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Xingli Zhang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Changjie Lou
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yangfen Zhang
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Wei Wang
- Department of Interventional Oncology, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Peiyuan Cai
- Department of Interventional Oncology, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Juan Zhao
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
6
|
Wu T, Liu Y, Ali NM, Zhang B, Cui X. Effects of Exosomes on Tumor Bioregulation and Diagnosis. ACS OMEGA 2023; 8:5157-5168. [PMID: 36816660 PMCID: PMC9933233 DOI: 10.1021/acsomega.2c06567] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Exosomes are lipid bilayer vesicles in biological fluids, which can participate in biological processes by mediating intercellular communication and activating intracellular signaling pathways, especially cancerogenic processes, such as proliferation, metastasis, invasion, and immune regulation of cancer cells. Besides, cancer-derived exosomes are also involved in tumor diagnosis and therapy as biomarkers and nanotransport devices. This article reviews the latest research progress on the biological regulation and disease diagnosis of exosomes in tumors, with the aim of providing new ideas for the clinical treatment of cancers.
Collapse
Affiliation(s)
- Tong Wu
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Ying Liu
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
- Department
of Oncology, Affiliated Zhongshan Hospital
of Dalian University, Dalian 116011, P.R. China
| | - Nasra Mohamoud Ali
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Bin Zhang
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Xiaonan Cui
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| |
Collapse
|
7
|
Pancreatic Cancer in Chronic Pancreatitis: Pathogenesis and Diagnostic Approach. Cancers (Basel) 2023; 15:cancers15030761. [PMID: 36765725 PMCID: PMC9913572 DOI: 10.3390/cancers15030761] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Chronic pancreatitis is one of the main risk factors for pancreatic cancer, but it is a rare event. Inflammation and oncogenes work hand in hand as key promoters of this disease. Tobacco is another co-factor. During alcoholic chronic pancreatitis, the cumulative risk of cancer is estimated at 4% after 15 to 20 years. This cumulative risk is higher in hereditary pancreatitis: 19 and 12% in the case of PRSS1 and SPINK1 mutations, respectively, at an age of 60 years. The diagnosis is difficult due to: (i) clinical symptoms of cancer shared with those of chronic pancreatitis; (ii) the parenchymal and ductal remodeling of chronic pancreatitis rendering imaging analysis difficult; and (iii) differential diagnoses, such as pseudo-tumorous chronic pancreatitis and paraduodenal pancreatitis. Nevertheless, the occurrence of cancer during chronic pancreatitis must be suspected in the case of back pain, weight loss, unbalanced diabetes, and jaundice, despite alcohol withdrawal. Imaging must be systematically reviewed. Endoscopic ultrasound-guided fine-needle biopsy can contribute by targeting suspicious tissue areas with the help of molecular biology (search for KRAS, TP53, CDKN2A, DPC4 mutations). Short-term follow-up of patients is necessary at the clinical and paraclinical levels to try to diagnose cancer at a surgically curable stage. Pancreatic surgery is sometimes necessary if there is any doubt.
Collapse
|
8
|
Gangadaran P, Madhyastha H, Madhyastha R, Rajendran RL, Nakajima Y, Watanabe N, Velikkakath AKG, Hong CM, Gopi RV, Muthukalianan GK, Valsala Gopalakrishnan A, Jeyaraman M, Ahn BC. The emerging role of exosomes in innate immunity, diagnosis and therapy. Front Immunol 2023; 13:1085057. [PMID: 36726968 PMCID: PMC9885214 DOI: 10.3389/fimmu.2022.1085057] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
Exosomes, which are nano-sized transport bio-vehicles, play a pivotal role in maintaining homeostasis by exchanging genetic or metabolic information between different cells. Exosomes can also play a vital role in transferring virulent factors between the host and parasite, thereby regulating host gene expression and the immune interphase. The association of inflammation with disease development and the potential of exosomes to enhance or mitigate inflammatory pathways support the notion that exosomes have the potential to alter the course of a disease. Clinical trials exploring the role of exosomes in cancer, osteoporosis, and renal, neurological, and pulmonary disorders are currently underway. Notably, the information available on the signatory efficacy of exosomes in immune-related disorders remains elusive and sporadic. In this review, we discuss immune cell-derived exosomes and their application in immunotherapy, including those against autoimmune connective tissue diseases. Further, we have elucidated our views on the major issues in immune-related pathophysiological processes. Therefore, the information presented in this review highlights the role of exosomes as promising strategies and clinical tools for immune regulation.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Radha Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Yuichi Nakajima
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Nozomi Watanabe
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Anoop Kumar G. Velikkakath
- Center for System Biology and Molecular Medicine, Yenepoya Research center, Yenepoya (Deemed to be University), Mangaluru, Karnataka, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Rahul Velikkakath Gopi
- Department of Tissue Engineering and Regeneration Technologies, Sree Chitra Thirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
9
|
Tu J, Zheng N, Mao C, Liu S, Zhang H, Sun L. UC-BSCs Exosomes Regulate Th17/Treg Balance in Patients with Systemic Lupus Erythematosus via miR-19b/KLF13. Cells 2022; 11:cells11244123. [PMID: 36552891 PMCID: PMC9777319 DOI: 10.3390/cells11244123] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Umbilical cord blood mesenchymal stem cells (UC-BSCs) are cells with low immunogenicity and differentiation potential, and the transfer of exosomes carried by UC-BSCs can regulate innate and adaptive immunity and affect immune homeostasis. This is an area of focus for autoimmune illnesses such as systemic lupus erythematosus (SLE). The target of this research was to investigate the immunomodulatory effect of exosomes produced from mesenchymal stem cells on SLE and its mechanism. After isolation of peripheral blood mononuclear cells (PBMC) from the SLE group and healthy group and treatment of SLE-derived PBMCs with UC-BSC-derived exosomes, the mRNA levels of corresponding factors in cells under different treatments were determined by RT-PCR, Th17/Treg content was analyzed by FCM (flow cytometry), and the targeted binding of microRNA-19b (miR-19b) to KLF13 was identified by in vitro experiments and bioinformatics analysis. The findings demonstrated that PBMC cells from SLE patients had higher proportions of Th17 subsets than the control group, whereas Treg subgroups with lower percentages were discovered. miR-19b's expression level was markedly reduced, which was inversely associated to the concentration of KLF13. In vitro experiments show that UC-BSC-derived exosome treatment can target KLF13 expression by increasing the miR-19b level, thereby regulating Th17/Treg balance and inhibiting the expression of inflammatory factors. According to the study's findings, SLE patients have dysregulated expression of the genes miR-19b and KLF13, and UC-BSC exosomes could regulate Th17/Treg cell balance and inflammatory factor expression in SLE patients through miR-19b/KLF13.
Collapse
Affiliation(s)
- Jianxin Tu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Nan Zheng
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Chentong Mao
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Shan Liu
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Hongxing Zhang
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Li Sun
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Correspondence:
| |
Collapse
|
10
|
Tumor Cell Derived Exosomal GOT1 Suppresses Tumor Cell Ferroptosis to Accelerate Pancreatic Cancer Progression by Activating Nrf2/HO-1 Axis via Upregulating CCR2 Expression. Cells 2022; 11:cells11233893. [PMID: 36497150 PMCID: PMC9735520 DOI: 10.3390/cells11233893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Recently, evidence has shown that GOT1 expression is upregulated in pancreatic cancer tissues and promotes cancer development, but the specific mechanism remains unclear. We found that GOT1 expression was upregulated in pancreatic cancer cell-derived exosomes. When PANC-1 cells were incubated with exosomes alone or transfected together with si-GOT1, we found that exosomes enhanced cell proliferation, invasion and migration, promoted ferroptosis, and si-GOT1 reversed the effects of exosomes. The results of online bioinformatics database analysis indicated that CCR2 was a potential binding protein of GOT1 and is highly expressed in pancreatic cancer tissues. PANC-1 cells were transfected with pcDNA-CCR2 or si-CCR2, and it was found that pcDNA-CCR2 enhanced cell proliferation, invasion and migration, promoted ferroptosis, and si-CCR2 had an opposite effect. Next, exosome-treated cells were transfected with si-GOT1 alone or together with pcDNA-CCR2, and we found that exosomes promoted CCR2 expression, promoted cell proliferation and invasion, and inhibited ferroptosis, the transfection of si-GOT1 abolished the effect of exosomes, and the transfection of pcDNA-CCR2 again reversed the effect of si-GOT1. Furthermore, when exosome-treated cells were transfected with si-GOT1 alone or co-incubated with Nrf2 activator NK-252, we found that si-GOT1 reversed the promoting effect of exosomes on Nrf2 and HO-1 expression, as well as its inhibitory effect on ferroptosis, but this effect was abrogated by NK-252. In vivo studies showed that knockdown of GOT1 expression inhibited tumor formation compared with tumor tissues formed upon exosome induction, which was mediated by promoting ferroptosis via suppressing the protein expression of GOT1, CCR2, Nrf2 and HO-1 in tumor tissues.
Collapse
|
11
|
Yang Q, Luo Y, Lan B, Dong X, Wang Z, Ge P, Zhang G, Chen H. Fighting Fire with Fire: Exosomes and Acute Pancreatitis-Associated Acute Lung Injury. Bioengineering (Basel) 2022; 9:615. [PMID: 36354526 PMCID: PMC9687423 DOI: 10.3390/bioengineering9110615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/30/2023] Open
Abstract
Acute pancreatitis (AP) is a prevalent clinical condition of the digestive system, with a growing frequency each year. Approximately 20% of patients suffer from severe acute pancreatitis (SAP) with local consequences and multi-organ failure, putting a significant strain on patients' health insurance. According to reports, the lungs are particularly susceptible to SAP. Acute respiratory distress syndrome, a severe type of acute lung injury (ALI), is the primary cause of mortality among AP patients. Controlling the mortality associated with SAP requires an understanding of the etiology of AP-associated ALI, the discovery of biomarkers for the early detection of ALI, and the identification of potentially effective drug treatments. Exosomes are a class of extracellular vesicles with a diameter of 30-150 nm that are actively released into tissue fluids to mediate biological functions. Exosomes are laden with bioactive cargo, such as lipids, proteins, DNA, and RNA. During the initial stages of AP, acinar cell-derived exosomes suppress forkhead box protein O1 expression, resulting in M1 macrophage polarization. Similarly, macrophage-derived exosomes activate inflammatory pathways within endothelium or epithelial cells, promoting an inflammatory cascade response. On the other hand, a part of exosome cargo performs tissue repair and anti-inflammatory actions and inhibits the cytokine storm during AP. Other reviews have detailed the function of exosomes in the development of AP, chronic pancreatitis, and autoimmune pancreatitis. The discoveries involving exosomes at the intersection of AP and acute lung injury (ALI) are reviewed here. Furthermore, we discuss the therapeutic potential of exosomes in AP and associated ALI. With the continuous improvement of technological tools, the research on exosomes has gradually shifted from basic to clinical applications. Several exosome-specific non-coding RNAs and proteins can be used as novel molecular markers to assist in the diagnosis and prognosis of AP and associated ALI.
Collapse
Affiliation(s)
- Qi Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bowen Lan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xuanchi Dong
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
12
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
13
|
Fang Z, Ding Y, Xue Z, Li P, Li J, Li F. Roles of exosomes as drug delivery systems in cancer immunotherapy: a mini-review. Discov Oncol 2022; 13:74. [PMID: 35962862 PMCID: PMC9375799 DOI: 10.1007/s12672-022-00539-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 11/04/2022] Open
Abstract
Exosomes can be released by a variety of cells and participate in intercellular communication in many physiological processes in the body. They can be used as carriers of cancer therapeutic drugs and have natural delivery capabilities. Some biologically active substances on exosomes, such as major histocompatibility complex (MHC), have been shown to be involved in exosome-mediated anticancer immune responses and have important regulatory effects on the immune system. Exosome-based drug delivery systems hold great promise in future cancer immunotherapy. However, there are still substantial challenges to be overcome in the clinical application of exosomes as drug carriers. This article reviews the biological characteristics of exosome drug delivery systems and their potential applications and challenges in cancer immunotherapy.
Collapse
Affiliation(s)
- Zhen Fang
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yixuan Ding
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Zhigang Xue
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Peijuan Li
- Dalian Medical University, Dalian, Liaoning, China.
| | - Jia Li
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
14
|
Marin AM, Mattar SB, Amatuzzi RF, Chammas R, Uno M, Zanette DL, Aoki MN. Plasma Exosome-Derived microRNAs as Potential Diagnostic and Prognostic Biomarkers in Brazilian Pancreatic Cancer Patients. Biomolecules 2022; 12:769. [PMID: 35740894 PMCID: PMC9221134 DOI: 10.3390/biom12060769] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer represents one of the leading causes of oncological death worldwide. A combination of pancreatic cancer aggressiveness and late diagnosis are key factors leading to a low survival rate and treatment inefficiency, and early diagnosis is pursued as a critical factor for pancreatic cancer. In this context, plasma microRNAs are emerging as promising players due to their non-invasive and practical usage in oncological diagnosis and prognosis. Recent studies have showed some miRNAs associated with pancreatic cancer subtypes, or with stages of the disease. Here we demonstrate plasma exosome-derived microRNA expression in pancreatic cancer patients and healthy individuals from Brazilian patients. Using plasma of 65 pancreatic cancer patients and 78 healthy controls, plasma exosomes were isolated and miRNAs miR-27b, miR-125b-3p, miR-122-5p, miR-21-5p, miR-221-3p, miR-19b, and miR-205-5p were quantified by RT-qPCR. We found that miR-125b-3p, miR-122-5p, and miR-205-5p were statistically overexpressed in the plasma exosomes of pancreatic cancer patients compared to healthy controls. Moreover, miR-205-5p was significantly overexpressed in European descendants, in patients with tumor progression and in those who died from the disease, and diagnostic ability by ROC curve was 0.86. Therefore, we demonstrate that these three microRNAs are potential plasma exosome-derived non-invasive biomarkers for the diagnosis and prognosis of Brazilian pancreatic cancer, demonstrating the importance of different populations and epidemiological bias.
Collapse
Affiliation(s)
- Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81310-020, Brazil; (A.M.M.); (S.B.M.); (D.L.Z.)
| | - Sibelle Botogosque Mattar
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81310-020, Brazil; (A.M.M.); (S.B.M.); (D.L.Z.)
| | - Rafaela Ferreira Amatuzzi
- Laboratory of Expression Regulation, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81310-020, Brazil;
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto Do Câncer Do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (R.C.); (M.U.)
| | - Miyuki Uno
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto Do Câncer Do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (R.C.); (M.U.)
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81310-020, Brazil; (A.M.M.); (S.B.M.); (D.L.Z.)
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81310-020, Brazil; (A.M.M.); (S.B.M.); (D.L.Z.)
| |
Collapse
|
15
|
Li C, Zhou T, Chen J, Li R, Chen H, Luo S, Chen D, Cai C, Li W. The role of Exosomal miRNAs in cancer. J Transl Med 2022; 20:6. [PMID: 34980158 PMCID: PMC8722109 DOI: 10.1186/s12967-021-03215-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023] Open
Abstract
Exosomal miRNAs have attracted much attention due to their critical role in regulating genes and the altered expression of miRNAs in virtually all cancers affecting humans (Sun et al. in Mol Cancer 17(1):14, 2018). Exosomal miRNAs modulate processes that interfere with cancer immunity and microenvironment, and are significantly involved in tumor growth, invasion, metastasis, angiogenesis and drug resistance. Fully investigating the detailed mechanism of miRNAs in the occurrence and development of various cancers could help not only in the treatment of cancers but also in the prevention of malignant diseases. The current review highlighted recently published advances regarding cancer-derived exosomes, e.g., sorting and delivery mechanisms for RNAs. Exosomal miRNAs that modulate cancer cell-to-cell communication, impacting tumor growth, angiogenesis, metastasis and multiple biological features, were discussed. Finally, the potential role of exosomal miRNAs as diagnostic and prognostic molecular markers was summarized, as well as their usefulness in detecting cancer resistance to therapeutic agents.
Collapse
Affiliation(s)
- Chuanyun Li
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China
| | - Tong Zhou
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jing Chen
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China.,Beijing Institute of Hepatology, Beijing, China
| | - Rong Li
- Chengde Medical University, Chengde, China
| | - Huan Chen
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China
| | - Shumin Luo
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China.,Beijing Institute of Hepatology, Beijing, China
| | - Dexi Chen
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China.,Beijing Institute of Hepatology, Beijing, China
| | - Cao Cai
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China.
| | - Weihua Li
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China. .,Beijing Institute of Hepatology, Beijing, China.
| |
Collapse
|