1
|
Chen JM, He J, Qiu JM, Yang GG, Wang D, Shen Z. Netrin-1-CD146 and netrin-1-S100A9 are associated with early stage of lymph node metastasis in colorectal cancer. BMC Gastroenterol 2024; 24:308. [PMID: 39261771 PMCID: PMC11389491 DOI: 10.1186/s12876-024-03401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND The netrin-1/CD146 pathway regulates colorectal cancer (CRC) liver metastasis, angiogenesis, and vascular development. However, few investigations have yet examined the biological function of netrin-1/CD146 complex in CRC. In this work, we investigated the relationship between the netrin-1/CD146 axis and S100 proteins in sentinel lymph node, and revealed a possible new clue for vascular metastasis of CRC. METHODS The expression levels of netrin-1 and CD146 proteins in CRC, as well as S100A8 and S100A9 proteins in the sentinel lymph nodes were determined by immunohistochemistry. Using GEPIA and UALCAN, we analyzed netrin-1 and CD146 gene expression in CRC, their association with CRC stage, and their expression levels and prognosis in CRC patients. RESULTS The expression level of netrin-1 in N1a+1b (CRC lymphatic metastasis groups, exculded N1c) was positively increased with N0 (p = 0.012). The level of netrin-1 protein was positively correlated with CD146 protein (p < 0.05). The level of S100A9 protein was positively correlated with CD146 protein (r = 0.492, p = 0.007). Moreover, netrin-1 expression was obviously correlated with S100A9 expression in the N1 stage (r = 0.867, p = 0.000). CD146 level was correlated with S100A9 level in the N2 stage (r = 0.731, p = 0.039). CD146 mRNA expression was higher in normal colorectal tissues than in CRC (p < 0.05). Netrin-1 and CD146 expression were not significantly associated with the tumor stages and prognosis of patients with CRC (p > 0.05). CONCLUSIONS The netrin-1/CD146 and netrin-1/S100A9 axis in CRC tissues might related with early stage of lymph node metastasis, thus providing potential novel channels for blocking lymphatic metastasis and guiding biomarker discovery in CRC patients.
Collapse
Affiliation(s)
- Jin-Ming Chen
- Department of Anorectal Surgery, the Third People's Hospital of Hangzhou, 38 West Lake Avenue, 310009, Hangzhou, People's Republic of China.
| | - Jun He
- Department of Anorectal Surgery, the Third People's Hospital of Hangzhou, 38 West Lake Avenue, 310009, Hangzhou, People's Republic of China
| | - Jian-Ming Qiu
- Department of Anorectal Surgery, the Third People's Hospital of Hangzhou, 38 West Lake Avenue, 310009, Hangzhou, People's Republic of China
| | - Guan-Gen Yang
- Department of Anorectal Surgery, the Third People's Hospital of Hangzhou, 38 West Lake Avenue, 310009, Hangzhou, People's Republic of China
| | - Dong Wang
- Department of Anorectal Surgery, the Third People's Hospital of Hangzhou, 38 West Lake Avenue, 310009, Hangzhou, People's Republic of China
| | - Zhong Shen
- Department of Anorectal Surgery, the Third People's Hospital of Hangzhou, 38 West Lake Avenue, 310009, Hangzhou, People's Republic of China.
| |
Collapse
|
2
|
Qian Z, Zhao H, Zhang Y, Wang Z, Zeng F, Zhu Y, Yang Y, Li J, Ma T, Huang C. Coiled-coil domain containing 25 (CCDC25) regulates cell proliferation, migration, and invasion in clear cell renal cell carcinoma by targeting the ILK-NF-κB signaling pathway. FASEB J 2024; 38:e23414. [PMID: 38236371 DOI: 10.1096/fj.202301064rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/27/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024]
Abstract
Increasing evidence has demonstrated that the expression of coil domains containing 25 (CCDC25) in various malignancies is abnormally high. However, the potential regulatory role and mechanism of CCDC25 in the development of clear cell renal cell carcinoma (ccRCC) are still unclear. In this experiment, we combined in vitro experiments such as wound healing, CCK8, and transwell assay with in vivo experiments on tumor formation in nude mice to evaluate the effect of CCDC25 on the proliferation, migration, and invasion of renal cancer cells. In addition, we also used Western blotting and qPCR to evaluate the role of CCDC25 in activating the integrin-linked kinase (ILK)-NF-κB signaling pathway. Here, we demonstrate that compared to normal tissues and cell lines, CCDC25 is overexpressed in both human ccRCC tissues and cell lines. After CCDC25 knockdown, it has obvious inhibitory effect on the proliferation, migration, and invasion of cancer cells in vitro and in vivo. In contrast, CCDC25 overexpression promotes these effects. Additionally, we also discovered that CCDC25 interacts with ILK and coordinates the activation of the NF-κB signaling pathway downstream. Generally, our study suggests that CCDC25 plays a vital role in the development of ccRCC, which also means that it may be a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Zhenzhen Qian
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Huizi Zhao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yuan Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhonghao Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Fanle Zeng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yan Zhu
- The First Affiliated Hospital of Anhui Medical University, hefei, China
| | - Yaru Yang
- The Second Affiliated Hospital of Anhui Medical University, hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
3
|
Li QY, Guo Q, Luo WM, Luo XY, Ji YM, Xu LQ, Guo JL, Shi RS, Li F, Lin CY, Zhang J, Ke D. Overexpression of MTFR1 promotes cancer progression and drug-resistance on cisplatin and is related to the immune microenvironment in lung adenocarcinoma. Aging (Albany NY) 2024; 16:66-88. [PMID: 38170222 PMCID: PMC10817379 DOI: 10.18632/aging.205338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE The roles of MTFR1 in the drug resistance of lung adenocarcinoma (LAC) to cisplatin remain unexplored. In this study, the expression, clinical values and mechanisms of MTFR1 were explored, and the relationship between MTFR1 expression and immune microenvironment was investigated in LAC using bioinformatics analysis, cell experiments, and meta-analysis. METHODS MTFR1 expression and clinical values, and the relationship between MTFR1 expression and immunity were explored, through bioinformatics analysis. The effects of MTFR1 on the growth, migration and cisplatin sensitivity of LAC cells were identified using cell counting kit-8, wound healing and Transwell experiments. Additionally, the mechanisms of drug resistance of LAC cells involving MTFR1 were investigated using western blotting. RESULTS MTFR1 was elevated in LAC tissues. MTFR1 overexpression was associated with sex, age, primary therapy outcome, smoking, T stage, unfavourable prognosis and diagnostic value and considered an independent risk factor for an unfavourable prognosis in patients with LAC. MTFR1 co-expressed genes involved in the cell cycle, oocyte meiosis, DNA replication and others. Moreover, interfering with MTFR1 expression inhibited the proliferation, migration and invasion of A549 and A549/DDP cells and promoted cell sensitivity to cisplatin, which was related to the inhibition of p-AKT, p-P38 and p-ERK protein expression. MTFR1 overexpression was associated with stromal, immune and estimate scores along with natural killer cells, pDC, iDC and others in LAC. CONCLUSIONS MTFR1 overexpression was related to the unfavourable prognosis, diagnostic value and immunity in LAC. MTFR1 also participated in cell growth and migration and promoted the drug resistance of LAC cells to cisplatin via the p-AKT and p-ERK/P38 signalling pathways.
Collapse
Affiliation(s)
- Qian-Yun Li
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wei-Min Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiang-Yu Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan-Mei Ji
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li-Qiang Xu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jia-Long Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Rong-Shu Shi
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Li
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Cheng-Yi Lin
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jun Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Di Ke
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
4
|
Yang Q, Huang W, Hsu JC, Song L, Sun X, Li C, Cai W, Kang L. CD146-targeted nuclear medicine imaging in cancer: state of the art. VIEW 2023; 4:20220085. [PMID: 38076327 PMCID: PMC10703309 DOI: 10.1002/viw.20220085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 01/02/2024] Open
Abstract
The transmembrane glycoprotein adhesion molecule CD146 is overexpressed in a wide variety of cancers. Through molecular imaging, a specific biomarker's expression and distribution can be viewed in vivo non-invasively. Radionuclide-labeled monoclonal antibodies or relevant fragments that target CD146 may find potential applications in cancer imaging, thereby offering tremendous value in cancer diagnosis, staging, prognosis evaluation, and prediction of drug resistance. This review discusses the recent developments of CD146-targeted molecular imaging via nuclear medicine, especially in malignant melanoma, brain tumor, lung cancer, liver cancer, breast cancer, and pancreatic cancer. Many studies have proved that CD146 targeting may present a promising strategy for cancer theranostics.
Collapse
Affiliation(s)
- Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Jessica C. Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States of America
| | - Lele Song
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xinyao Sun
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Cuicui Li
- Department of Nuclear Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States of America
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
5
|
Mo Y, Zhao J, Zhao R, Huang Y, Liang Z, Zhou X, Chu J, Pan X, Duan S, Chen S, Mo L, Huang B, Huang Z, Wei J, Zheng Q, Luo W. Loss of ACOX1 in clear cell renal cell carcinoma and its correlation with clinical features. Open Life Sci 2023; 18:20220696. [PMID: 37724116 PMCID: PMC10505341 DOI: 10.1515/biol-2022-0696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/18/2023] [Accepted: 07/30/2023] [Indexed: 09/20/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a major pathological type of kidney cancer with a poor prognosis due to a lack of biomarkers for early diagnosis and prognosis prediction of ccRCC. In this study, we investigated the aberrant expression of Acyl-coenzyme A oxidase 1 (ACOX1) in ccRCC and evaluated its potential in diagnosis and prognosis. ACOX1 is the first rate-limiting enzyme in the peroxidation β-oxidation pathway and is involved in the regulation of fatty acid oxidative catabolism. The mRNA and protein levels of ACOX1 were significantly downregulated in ccRCC, and its downregulation was closely associated with the tumor-node-metastasis stage of patients. The ROC curves showed that ACOX1 possesses a high diagnostic value for ccRCC. The OS analysis suggested that lower expression of ACOX1 was closely related to the worse outcome of patients. In addition, gene set enrichment analysis suggested that expression of ACOX1 was positively correlated with CDH1, CDH2, CDKL2, and EPCAM, while negatively correlated with MMP9 and VIM, which strongly indicated that ACOX1 may inhibit the invasion and migration of ccRCC by reversing epithelial-mesenchymal transition. Furthermore, we screened out that miR-16-5p is upregulated at the mRNA transcript level in ccRCC and negatively correlated with ACOX1. In conclusion, our results showed that ACOX1 is abnormally low expressed in ccRCC, suggesting that it could serve as a diagnostic and prognostic biomarker for ccRCC. Overexpression of miR-16-5p may be responsible for the inactivation of ACOX1.
Collapse
Affiliation(s)
- Yingxi Mo
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jun Zhao
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
- Affiliated Stomatological Hospital of Guangxi Medical University, Nanning, China
| | - Ran Zhao
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Yiying Huang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Ziyuan Liang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Xiaoying Zhou
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Jiemei Chu
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Xinli Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Siyu Duan
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Shiman Chen
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Liufang Mo
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Bizhou Huang
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Zhaozhang Huang
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Jiale Wei
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Qian Zheng
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Wenqi Luo
- Department of Pathology, Guangxi Medical University Cancer Hospital, 530021, Nanning, China
| |
Collapse
|
6
|
Li L, Zhao J, Zhang H, Li D, Wu S, Xu W, Pan X, Hu W, Chu J, Luo W, Li P, Zhou X. HIGD1A inactivated by DNA hypermethylation promotes invasion of kidney renal clear cell carcinoma. Pathol Res Pract 2023; 245:154463. [PMID: 37086631 DOI: 10.1016/j.prp.2023.154463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/18/2023] [Accepted: 04/10/2023] [Indexed: 04/24/2023]
Abstract
Hypoxia contributes to the tumorigenesis and metastasis of the tumor. However, the detailed mechanisms underlying hypoxia and kidney renal clear cell carcinoma (KIRC) development and progression remain unclear. Here, we investigated the role of the system HIG1 hypoxia inducible domain family member 1 A (HIGD1A) in the proliferation and metastasis of KIRC and elucidated the underlying molecular mechanisms. The expression of HIGD1A is significantly downregulated in KIRC due to promoter hypermethylation. HIGD1A could serve as a valuable diagnostic biomarker in KIRC. In addition, ectopic overexpression of HIGD1A significantly suppressed the growth and invasive capacity of KIRC cells in vitro under normal glucose conditions. Interestingly, the suppressive efficacy in invasion is much more significant when depleted glucose, but not in proliferation. Furthermore, mRNA expression of HIGD1A positively correlates with CDH1 and EPCAM, while negatively correlated with VIM and SPARC, indicating that HIGD1A impedes invasion of KIRC by regulating epithelial-mesenchymal transition (EMT). Our data suggest that HIGD1A is a potential diagnostic biomarker and tumor suppressor in KIRC.
Collapse
Affiliation(s)
- Limei Li
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China; Department of Pathology, College & Hospital of Stomatology Guangxi Medical University, Nanning, China
| | - Jun Zhao
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China; Department of Pathology, College & Hospital of Stomatology Guangxi Medical University, Nanning, China
| | - Haishan Zhang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China; Department of Pathology, College & Hospital of Stomatology Guangxi Medical University, Nanning, China
| | - Danping Li
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China; Department of Pathology, College & Hospital of Stomatology Guangxi Medical University, Nanning, China
| | - Shu Wu
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China; Department of Pathology, College & Hospital of Stomatology Guangxi Medical University, Nanning, China
| | - Wenqing Xu
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Xinli Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Wenjin Hu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Jiemei Chu
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Wenqi Luo
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Ping Li
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China; Department of Pathology, College & Hospital of Stomatology Guangxi Medical University, Nanning, China.
| | - Xiaoying Zhou
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China; Life Science Institute, Guangxi Medical University, Nanning, China.
| |
Collapse
|
7
|
Lei P, Zhang M, Li Y, Wang Z. High GTSE1 expression promotes cell proliferation, metastasis and cisplatin resistance in ccRCC and is associated with immune infiltrates and poor prognosis. Front Genet 2023; 14:996362. [PMID: 36999057 PMCID: PMC10043236 DOI: 10.3389/fgene.2023.996362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Background: Clear cell renal cell carcinoma is the most common and fatal form of kidney cancer, accounting for 80% of new cases. Although it has been reported that GTSE1 is highly expressed in a variety of tumors and associated with malignant progression and poor clinical prognosis, its clinical significance, correlations with immune cell infiltration and biological function in ccRCC are still poorly understood.Methods: The gene expression, clinicopathological features, and clinical significance of GTSE1 were analyzed using multiple databases, including TCGA, GEO, TIMER, and UALCAN Kaplan–Meier survival analysis, gene set enrichment analysis gene ontology enrichment Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed. Tumor-infiltrating immune cells and immunomodulators were extracted and analyzed using TCGA-KIRC profiles. Protein‒protein interactions were built using the STRING website. The protein level of GTSE1 in ccRCC patients was detected by immunohistochemistry using a ccRCC tissue chip. Finally, MTT assays, colony-formation assays, cell flow cytometry analyses, EdU-staining assays, wound-healing assays, and transwell migration and invasion assays were conducted to assess the biological function of GTSE1 in vitro.Results: GTSE1 was overexpressed in ccRCC tissues and cells, and GTSE1 overexpression was associated with adverse clinical-pathological factors and poor clinical prognosis. Meanwhile, the functional enrichment analysis indicated that GTSE1 and its coexpressed genes were mainly related to the cell cycle, DNA replication, and immunoreaction, such as T-cell activation and innate immune response, through multiple signaling pathways, including the P53 signaling pathway and T-cell receptor signaling pathway. Furthermore, we observed a significant relationship between GTSE1 expression and the levels of infiltrating immune cells in ccRCC. Biological functional studies demonstrated that GTSE1 could promote the malignant progression of ccRCC by promoting cell proliferation, cell cycle transition, migration, and invasion capacity and decreasing the sensitivity of ccRCC cells to cisplatin.Conclusion: Our results indicate that GTSE1, serving as a potential oncogene, can promote malignant progression and cisplatin resistance in ccRCC. Additionally, high GTSE1 expression contributes to an increased level of immune cell infiltration and is associated with a worse prognosis, providing a potential target for tumor therapy in ccRCC.
Collapse
Affiliation(s)
- Pu Lei
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, China
- Department of Urology, Yulin City No. 2 Hospital, Yulin, Shaanxi, China
| | - Mengzhao Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yan Li
- Department of Vascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ziming Wang
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, China
- *Correspondence: Ziming Wang,
| |
Collapse
|
8
|
Chen G, Song H, Yang Z, Du T, Zheng Y, Lu Z, Zhang K, Wei D. AQP5 Is a Novel Prognostic Biomarker in Pancreatic Adenocarcinoma. Front Oncol 2022; 12:890193. [PMID: 35619903 PMCID: PMC9128544 DOI: 10.3389/fonc.2022.890193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/04/2022] [Indexed: 12/23/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor with a poor prognosis. The identification of effective molecular markers is of great significance for diagnosis and treatment. Aquaporins (AQPs) are a family of water channel proteins that exhibit several properties and play regulatory roles in human carcinogenesis. However, the association between Aquaporin-5 (AQP5) expression and prognosis and tumor-infiltrating lymphocytes in PAAD has not been reported. Methods AQP5 mRNA expression, methylation, and protein expression data in PAAD were analyzed using GEPIA, UALCAN, HAP, METHSURV, and UCSC databases. AQP5 expression in PAAD patients and cell lines from our cohort was examined using immunohistochemistry and Western blotting. The LinkedOmics database was used to study signaling pathways related to AQP5 expression. TIMER and TISIDB were used to analyze correlations among AQP5, tumor-infiltrating immune cells, and immunomodulators. Survival was analyzed using TCGA and Kaplan-Meier Plotter databases. Results In this study, we investigated AQP5 expression in PAAD and determined whether the expression of AQP5 is a strong prognostic biomarker for PAAD. We searched and analyzed public cancer databases (GEO, TCGA, HAP, UALCAN, GEPIA, etc.) to conclude that AQP5 expression levels were upregulated in PAAD. Kaplan-Meier curve analysis showed that high AQP5 expression positively correlated with poor prognosis. Using TIMER and TISIDB, we found that the expression of AQP5 was associated with different tumor-infiltrating immune cells, especially macrophages. We found that hypomethylation of the AQP5 promoter region was responsible for its high expression in PAAD. Conclusions AQP5 can serve as a novel biomarker to predict prognosis and immune infiltration in PAAD.
Collapse
Affiliation(s)
- Guo Chen
- Department of Biopharmaceuticals, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Haiyang Song
- Department of Interventional Therapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zelong Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Tianshu Du
- People’s Liberation Army (PLA) of Institute of Orthopedics Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yu Zheng
- Department of Urology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
- Medical Innovation Center, Fourth Military Medical Univeristy, Xi’an, China
| | - Zifan Lu
- Department of Biopharmaceuticals, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Kunpeng Zhang
- Department of Catheterization Room, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Di Wei
- Department of Urology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| |
Collapse
|
9
|
Identification of IL20RB as a Novel Prognostic and Therapeutic Biomarker in Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2022; 2022:9443407. [PMID: 35299868 PMCID: PMC8923803 DOI: 10.1155/2022/9443407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a type of life-threatening malignant tumor of the urinary system. IL20RB, interleukin 20 receptor subunit beta, is a cytokine receptor subunit coding gene and was initially found to play a vital role in human cancers, while its role in ccRCC still remains unclear. Methods In this work, we explored the prognostic value and therapeutic potential of IL20RB in ccRCC mainly by online tools. Firstly, we used UALCAN and GEPIA to explore the expression profile and prognostic value of IL20RB in various cancers; the expression profile in tumor cell lines was also analysed with CCLE and Expression Atlas. Then, we decided to focus on ccRCC for further analysis; we further demonstrated the significant correlation between expression and clinical features by GEPIA and UALCAN. In order to reveal the potential intrinsic mechanism responsible for the upregulation of IL20RB in ccRCC, we made genetic alternation analysis and methylation analysis. cBioPortal was used for genetic alternation analysis. UALCAN, MethSurv, and Xena were used for methylation analysis. To learn details of how IL20RB might function in ccRCC, we further conducted functional analysis and immune infiltration analysis. STRING and GSEA were used to do functional analysis. TIMER was used for immune infiltration analysis; KM plotter was used for survival analysis. Results Results show that IL20RB is upregulated in ccRCC, and low methylation may be responsible for its upregulation. Both high expression and low methylation of IL20RB predict worse survival, and both have a strong positive correlation with clinical characteristics. In addition, results indicate that there exists a crosstalk between IL20RB and neutrophils. Furthermore, the immune microenvironment could influence the prognosis predicting ability of IL20RB. Conclusions In conclusion, IL20RB plays an important role in ccRCC and is identified as a novel prognostic and potential therapeutic biomarker in ccRCC.
Collapse
|