1
|
Wei X, Guo H, Zhao Y, Wang B, Yu J, He X. Dynamic fluorescence molecular tomography metabolic parameters solution based on problem decomposition and prior refactor. JOURNAL OF BIOPHOTONICS 2024; 17:e202300445. [PMID: 38212013 DOI: 10.1002/jbio.202300445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Dynamic fluorescence molecular tomography (DFMT), as a noninvasive optical imaging method, can quantify metabolic parameters of living animal organs and assist in the diagnosis of metabolic diseases. However, existing DFMT methods do not have a high capacity to reconstruct abnormal metabolic regions, and require additional prior information and complicated solution methods. This paper introduces a problem decomposition and prior refactor (PDPR) method. The PDPR decomposes the metabolic parameters into two kinds of problems depending on their temporal coupling, which are solved using regularization and parameter fitting. Moreover, PDPR introduces the idea of divide-and-conquer to refactor prior information to ensure discrimination between metabolic abnormal regions and normal tissues. Experimental results show that PDPR is capable of separating abnormal metabolic regions of the liver and has the potential to quantify metabolic parameters and diagnose liver metabolic diseases in small animals.
Collapse
Affiliation(s)
- Xiao Wei
- The School of Information Sciences and Technology, Northwest University, Xi'an, China
- Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China
| | - Hongbo Guo
- The School of Information Sciences and Technology, Northwest University, Xi'an, China
- Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China
| | - Yizhe Zhao
- The School of Information Sciences and Technology, Northwest University, Xi'an, China
- Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China
| | - Beilei Wang
- The School of Information Sciences and Technology, Northwest University, Xi'an, China
- Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China
| | - Jingjing Yu
- The School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Xiaowei He
- The School of Information Sciences and Technology, Northwest University, Xi'an, China
- Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China
| |
Collapse
|
2
|
Wei X, Guo H, Yu J, Liu Y, Zhao Y, He X. Multi-target reconstruction based on subspace decision optimization for bioluminescence tomography. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107711. [PMID: 37451228 DOI: 10.1016/j.cmpb.2023.107711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Bioluminescence tomography (BLT) is a noninvasive optical imaging technique that provides qualitative and quantitative information on the spatial distribution of tumors in living animals. Researchers have proposed a list of algorithms and strategies for BLT reconstruction to improve its reconstruction quality. However, multi-target BLT reconstruction remains challenging in practical clinical applications due to the mutual interference of optical signals and difficulty in source separation. METHODS To solve this problem, this study proposes the subspace decision optimization (SDO) approach based on the traditional iterative permissible region strategy. The SDO approach transforms a single permissible region into multiple subspaces by clustering analysis. These subspaces are shrunk based on subspace shrinking optimization to achieve spatial continuity of the permissible regions. In addition, these subspaces are merged to construct a new permissible region and then the next iteration of reconstruction is carried out to ensure the stability of the results. Finally, all the iterative results are optimized based on the normal distribution model and the distribution properties of the targets to ensure the sparsity of each target and the non-biasing of the overall results. RESULTS Experimental results show that the SDO approach can automatically identify and separate different targets, ensuring the accuracy and quality of multi-target BLT reconstruction results. Meanwhile, SDO can combine various types of reconstruction algorithms and provide stable and high-quality reconstruction results independent of the algorithm parameters. CONCLUSIONS The SDO approach provides an integrated solution to the multi-target BLT reconstruction problem, realizing the whole process including target recognition, separation, reconstruction, and result enhancement, which can extend the application domain of BLT.
Collapse
Affiliation(s)
- Xiao Wei
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China
| | - Hongbo Guo
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China.
| | - Jingjing Yu
- The School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Yanqiu Liu
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China
| | - Yingcheng Zhao
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China
| | - Xiaowei He
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China.
| |
Collapse
|
3
|
Liu Y, Chu M, Guo H, Hu X, Yu J, He X, Yi H, He X. Multispectral Differential Reconstruction Strategy for Bioluminescence Tomography. Front Oncol 2022; 12:768137. [PMID: 35251958 PMCID: PMC8895370 DOI: 10.3389/fonc.2022.768137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Bioluminescence tomography (BLT) is a promising in vivo molecular imaging tool that allows non-invasive monitoring of physiological and pathological processes at the cellular and molecular levels. However, the accuracy of the BLT reconstruction is significantly affected by the forward modeling errors in the simplified photon propagation model, the measurement noise in data acquisition, and the inherent ill-posedness of the inverse problem. In this paper, we present a new multispectral differential strategy (MDS) on the basis of analyzing the errors generated from the simplification from radiative transfer equation (RTE) to diffusion approximation and data acquisition of the imaging system. Through rigorous theoretical analysis, we learn that spectral differential not only can eliminate the errors caused by the approximation of RTE and imaging system measurement noise but also can further increase the constraint condition and decrease the condition number of system matrix for reconstruction compared with traditional multispectral (TM) reconstruction strategy. In forward simulations, energy differences and cosine similarity of the measured surface light energy calculated by Monte Carlo (MC) and diffusion equation (DE) showed that MDS can reduce the systematic errors in the process of light transmission. In addition, in inverse simulations and in vivo experiments, the results demonstrated that MDS was able to alleviate the ill-posedness of the inverse problem of BLT. Thus, the MDS method had superior location accuracy, morphology recovery capability, and image contrast capability in the source reconstruction as compared with the TM method and spectral derivative (SD) method. In vivo experiments verified the practicability and effectiveness of the proposed method.
Collapse
Affiliation(s)
- Yanqiu Liu
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an, China
| | - Mengxiang Chu
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- Network and Data Center, Northwest University, Xi’an, China
| | - Hongbo Guo
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an, China
- *Correspondence: Hongbo Guo, ; Xiaowei He,
| | - Xiangong Hu
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- Network and Data Center, Northwest University, Xi’an, China
| | - Jingjing Yu
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an, China
| | - Xuelei He
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an, China
| | - Huangjian Yi
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an, China
| | - Xiaowei He
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an, China
- Network and Data Center, Northwest University, Xi’an, China
- *Correspondence: Hongbo Guo, ; Xiaowei He,
| |
Collapse
|