1
|
Xiang H, Shen X, Chen E, Chen W, Song Z. Construction and validation of a novel algorithm based on oncosis-related lncRNAs comprising the immune landscape and prediction of colorectal cancer prognosis. Oncol Lett 2022; 25:63. [PMID: 36644148 PMCID: PMC9827452 DOI: 10.3892/ol.2022.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/01/2022] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) has high morbidity and mortality, particularly if diagnosed at an advanced stage. Although there have been several studies on CRC, few have investigated the relationship between oncosis and CRC. Thus, the purpose of the present study was to identify oncosis-related long noncoding RNAs (lncRNAs) and to establish a clinical prognostic model. Original data were acquired from The Cancer Genome Atlas database and PubMed. Differentially expressed oncosis-related lncRNAs (DEorlncRNAs) were identified and were subsequently formed into pairs. Next, a series of tests and analyses, including both univariate and multivariate analyses, as well as Lasso and Cox regression analyses, were performed to establish a receiver operating characteristic curve. A cut-off point was subsequently used to divide the samples into groups labelled as high- or low-risk. Thus, a model was established and evaluated in several dimensions. Six pairs of DEorlncRNAs associated with prognosis according to the algorithm were screened out and the CRC cases were divided into high- and low-risk groups. Significant differences between patients in the different risk groups were observed for several traits, including survival outcomes, clinical pathology characteristics, immune cell infiltration status and drug sensitivity. In addition, PCR and flow cytometry were performed to further verify the model. In summary, a new risk model algorithm based on six pairs of DEorlncRNAs in CRC, which does not require specific data regarding the level of gene expression, was established and validated. This algorithm may be used to predict patient prognosis, immune cell infiltration and drug sensitivity.
Collapse
Affiliation(s)
- Haoyi Xiang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China,Zhejiang University School of Medicine, Hangzhou, Zhejiang 310011, P.R. China
| | - Xuning Shen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China,Zhejiang University School of Medicine, Hangzhou, Zhejiang 310011, P.R. China
| | - Engeng Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China,Professor Wei Chen, Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, Zhejiang 310012, P.R. China, E-mail:
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China,Correspondence to: Professor Zhangfa Song, Department of Colorectal Surgery, Sir Run Run Shaw Hospital of Zhejiang University, 3 Qingchun East Road, Hangzhou, Zhejiang 310016, P.R. China, E-mail:
| |
Collapse
|
2
|
Xiong Q, Zeng Z, Yang Y, Wang Y, Xu Y, Zhou Y, Liu J, Zhang Z, Qiu M, Zhu Q. KRAS Gene Copy Number as a Negative Predictive Biomarker for the Treatment of Metastatic Rectal Cancer With Cetuximab: A Case Report. Front Oncol 2022; 12:872630. [PMID: 35734602 PMCID: PMC9207953 DOI: 10.3389/fonc.2022.872630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
Abstract
Background Close to one third of colorectal cancer (CRC) patients are diagnosed with metastatic CRC (mCRC). Patients with wild-type RAS and BRAF usually receive anti-EGFR monoclonal antibody therapy containing cetuximab. Overall, 30–50% of mCRC patients are reported to harbor RAS mutations, and RAS mutation status should be assessed when considering EGFR inhibitor treatment according to mCRC biomarker guidelines. Of note, 0.67–2% of patients with CRC harbored a KRAS amplification. Here we reported a case of advanced rectal cancer with wild-type RAS and BRAF in a male patient who harbored a KRAS amplification during anti-EGFR treatment. Case Presentation A 46-year-old man was diagnosed with rectal adenocarcinoma with liver metastases (cT3NxM1a, stage IVA). After receiving first-line irinotecan- fluorouracil chemotherapy (FOLFIRI) plus cetuximab, second-line capecitabine- oxaliplatin chemotherapy (XELOX) plus bevacizumab, and third-line regorafenib, he rechallenged FOLFIRI and cetuximab for seven cycles, achieving a prolonged survival of at least 5 months. The KRAS copy number of circulating tumor DNA (ctDNA) was assessed during treatment. Notably, apart from serum carbohydrate antigen 199 (CA199) and carcinoembryonic antigen (CEA), the change of plasm Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) copy number appeared to strongly correlate with treatment response. Conclusion Our findings suggest that the dynamic change of KRAS copy number on ctDNA during treatment might be a negative predictive biomarker. Additionally, RAS and BRAF wild-type mCRC patients who are resistant to first-line FOLFIRI plus cetuximab therapy may respond well to the FOLFIRI plus cetuximab “rechallenged” strategy.
Collapse
Affiliation(s)
- Qunli Xiong
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhu Zeng
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Yang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Ya Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongfeng Xu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Zhou
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlu Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiwei Zhang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|