1
|
Razipour M, Jamali Z, Sohrabpour S, Heidari F, Lotfi M, Ghadami E, Abtin M, Maghsudlu M, Sahebi L, Shakoori A. Dysregulated LINC01133 expression in laryngeal carcinoma: Prognostic implications and predicted ceRNA interactome. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2025; 14:93-107. [PMID: 39744510 PMCID: PMC11624609 DOI: 10.22099/mbrc.2024.50390.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Long non-coding RNAs (lncRNAs) have recently emerged as critical regulators of oncogenic or tumor-suppressive pathways in human cancers. LINC01133 is a lncRNA that has exhibited dichotomous roles in various malignancies but to the best of our knowledge, the role of LINC01133 in laryngeal squamous cell carcinoma (LSCC) has not been previously investigated. This study aimed to investigate the expression, clinical significance, and potential functions of the LINC01133 in LSCC. Integrative bioinformatics analysis of sequencing data obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets revealed LINC01133 as a differentially expressed lncRNA in head and neck/laryngeal cancers. Experimental validation via quantitative real-time PCR in 41 pairs of stage III and IV LSCC tissues and normal tissues adjacent to the tumor (NAT) demonstrated significant downregulation of LINC01133 in tumors (p<0.0001). Decreased LINC01133 expression associated with advanced tumor stage (p=0.0206) and lymph node metastasis (p=0.0203). The receiver operating characteristic analysis indicated potential diagnostic utility (AUC=0.7115, p=0.001). Bioinformatic predictions and literature mining suggested two potential competing endogenous RNA (ceRNA) mechanisms whereby LINC01133 may act as a tumor suppressor by sponging miR-205-5p to derepress the leucine-rich repeat kinase 2 (LRRK2) and androgen receptor, leading to dysregulation of cancer-related signaling cascades. This study provides initial evidence that loss of lncRNA LINC01133 expression may promote LSCC tumorigenesis, possibly by dysregulating microRNA interactions. Further verification of its regulatory mechanisms and diagnostic value is warranted.
Collapse
Affiliation(s)
- Masoumeh Razipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- These two authors contributed equally to this work
| | - Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- These two authors contributed equally to this work
| | - Saeed Sohrabpour
- Otorhinolaryngology Research Center, AmirAlam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farrokh Heidari
- Otorhinolaryngology Research Center, AmirAlam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Lotfi
- Department of Pathology and Otorhinolaryngology Research Center, AmirAlam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Ghadami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Abtin
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohaddese Maghsudlu
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leyla Sahebi
- Family Health Research Institute, Maternal-Fetal and Neonatal Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shakoori
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Cancer Institute of Iran, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Su L, Luo H, Yan Y, Yang Z, Lu J, Xu D, Du L, Liu J, Yang G, Chi H. Exploiting gender-based biomarkers and drug targets: advancing personalized therapeutic strategies in hepatocellular carcinoma. Front Pharmacol 2024; 15:1433540. [PMID: 38966543 PMCID: PMC11222576 DOI: 10.3389/fphar.2024.1433540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
This review systematically examines gender differences in hepatocellular carcinoma (HCC), identifying the influence of sex hormones, genetic variance, and environmental factors on the disease's epidemiology and treatment outcomes. Recognizing the liver as a sexually dimorphic organ, we highlight how gender-specific risk factors, such as alcohol consumption and obesity, contribute differently to hepatocarcinogenesis in men and women. We explore molecular mechanisms, including the differential expression of androgen and estrogen receptors, which mediate diverse pathways in tumor biology such as cell proliferation, apoptosis, and DNA repair. Our analysis underscores the critical need for gender-specific research in liver cancer, from molecular studies to clinical trials, to improve diagnostic accuracy and therapeutic effectiveness. By incorporating a gender perspective into all facets of liver cancer research, we advocate for a more precise and personalized approach to cancer treatment that acknowledges gender as a significant factor in both the progression of HCC and its response to treatment. This review aims to foster a deeper understanding of the biological and molecular bases of gender differences in HCC and to promote the development of tailored interventions that enhance outcomes for all patients.
Collapse
Affiliation(s)
- Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Huanyu Luo
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yalan Yan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhongqiu Yang
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Jiaan Lu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Danqi Xu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Linjuan Du
- Department of Oncology, Dazhou Central Hospital, Dazhou, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Nuermaimaiti A, Chang L, Yan Y, Sun H, Xiao Y, Song S, Feng K, Lu Z, Ji H, Wang L. The role of sex hormones and receptors in HBV infection and development of HBV-related HCC. J Med Virol 2023; 95:e29298. [PMID: 38087447 DOI: 10.1002/jmv.29298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023]
Abstract
Gender disparity in hepatitis B virus (HBV)-related diseases has been extensively documented. Epidemiological studies consistently reported that males have a higher prevalence of HBV infection and incidence of hepatocellular carcinoma (HCC). Further investigations have revealed that sex hormone-related signal transductions play a significant role in gender disparity. Sex hormone axes showed significantly different responses to virus entry and replication. The sex hormones axes change the HBV-specific immune responses and antitumor immunity. Additionally, Sex hormone axes showed different effects on the development of HBV-related disease. But the role of sex hormones remains controversial, and researchers have not reached a consensus on the role of sex hormones and the use of hormone therapies in HCC treatment. In this review, we aim to summarize the experimental findings on sex hormones and provide a comprehensive understanding of their roles in the development of HCC and their implications for hormone-related HCC treatment.
Collapse
Affiliation(s)
- Abudulimutailipu Nuermaimaiti
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingzi Xiao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shi Song
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kaihao Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhuoqun Lu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Lui K, Huang Y, Sheikh MS, Cheung KK, Tam WY, Sun KT, Cheng KM, Ng WWM, Loh AWK. The oncogenic potential of Rab-like protein 1A (RBEL1A) GTPase: The first review of RBEL1A research with future research directions and challenges. J Cancer 2023; 14:3214-3226. [PMID: 37928422 PMCID: PMC10622986 DOI: 10.7150/jca.84267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
Research on Rab-like protein 1A (RBEL1A) in the past two decades highlighted the oncogenic properties of this gene. Despite the emerging evidence, its importance in cancer biology was underrated. This is the first RBEL1A critical review covering its discovery, biochemistry, physiological functions, and clinical insights. RBEL1A expression at the appropriate levels appears essential in normal cells and tissues to maintain chromosomal stability; however, its overexpression is linked to tumorigenesis. Furthermore, the upstream and downstream targets of the RBEL1A signaling pathways will be discussed. Mechanistically, RBEL1A promotes cell proliferation signals by enhancing the Erk1/2, Akt, c-Myc, and CDK pathways while blunting the apoptotic signals via inhibitions on p53, Rb, and caspase pathways. More importantly, this review covers the clinical relevance of RBEL1A in the cancer field, such as drug resistance and poor overall survival rate. Also, this review points out the bottle-necks of the RBEL1A research and its future research directions. It is becoming clear that RBEL1A could potentially serve as a valuable target of anticancer therapy. Genetic and pharmacological researches are expected to facilitate the identification and development of RBEL1A inhibitors as cancer therapeutics in the future, which could undoubtedly improve the management of human malignancy.
Collapse
Affiliation(s)
- Ki Lui
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong
| | - Ying Huang
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - M. Saeed Sheikh
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Wing Yip Tam
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Keng-Ting Sun
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, United Kingdom
| | - Ka Ming Cheng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | | | - Anthony Wai-Keung Loh
- Division of Science, Engineering and Health Studies (SEHS), College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
5
|
Leo J, Dondossola E, Basham KJ, Wilson NR, Alhalabi O, Gao J, Kurnit KC, White MG, McQuade JL, Westin SN, Wellberg EA, Frigo DE. Stranger Things: New Roles and Opportunities for Androgen Receptor in Oncology Beyond Prostate Cancer. Endocrinology 2023; 164:bqad071. [PMID: 37154098 PMCID: PMC10413436 DOI: 10.1210/endocr/bqad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
The androgen receptor (AR) is one of the oldest therapeutic targets in oncology and continues to dominate the treatment landscape for advanced prostate cancer, where nearly all treatment regimens include some form of AR modulation. In this regard, AR remains the central driver of prostate cancer cell biology. Emerging preclinical and clinical data implicate key roles for AR in additional cancer types, thereby expanding the importance of this drug target beyond prostate cancer. In this mini-review, new roles for AR in other cancer types are discussed as well as their potential for treatment with AR-targeted agents. Our understanding of these additional functions for AR in oncology expand this receptor's potential as a therapeutic target and will help guide the development of new treatment approaches.
Collapse
Affiliation(s)
- Javier Leo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Nathaniel R Wilson
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Omar Alhalabi
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katherine C Kurnit
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, The University of Chicago, Chicago, IL 60637, USA
| | - Michael G White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth A Wellberg
- Department of Pathology, Harold Hamm Diabetes Center, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
6
|
Yavuz M, Sabour Takanlou L, Biray Avcı Ç, Demircan T. A Selective Androgen Receptor Modulator, S4, Displays Robust Anti-cancer Activity on Hepatocellular Cancer Cells by Negatively Regulating PI3K/AKT/mTOR Signaling Pathway. Gene 2023; 869:147390. [PMID: 36990257 DOI: 10.1016/j.gene.2023.147390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major global health problem that often correlates with poor prognosis. Due to the insufficient therapy options with limited benefits, it is crucial to identify new therapeutic approaches to overcome HCC. One of the vital signaling pathways in organ homeostasis and male sexual development is Androgen Receptor (AR) signaling. Its activity affects several genes that contribute to cancer characteristics and have essential roles in cell cycle progression, proliferation, angiogenesis, and metastasis. AR signaling has been shown to be misregulated in many cancers, including HCC, suggesting that it might contribute to hepatocarcinogenesis. Targeting AR signaling using anti-androgens, AR inhibitors, or AR-degrading molecules is a powerful and promising strategy to defeat HCC. In this study, AR signaling was targeted by a novel Selective Androgen Receptor Modulator (SARM), S4, in HCC cells to evaluate its potential anti-cancer effect. To date, S4 activity in cancer has not been demonstrated, and our data unrevealed that S4 significantly impaired HCC growth, migration, proliferation, and induced apoptosis through inhibiting PI3K/AKT/mTOR signaling. Since PI3K/AKT/mTOR signaling is frequently activated in HCC and contributes to its aggressiveness and poor prognosis, its negative regulation by the downregulation of critical components via S4 was a prominent finding. Further studies are necessary to investigate the S4 action mechanism and anti-tumorigenic capacity in in-vivo.
Collapse
|
7
|
Zhang L, Wu J, Wu Q, Zhang X, Lin S, Ran W, Zhu L, Tang C, Wang X. Sex steroid axes in determining male predominance in hepatocellular carcinoma. Cancer Lett 2023; 555:216037. [PMID: 36563929 DOI: 10.1016/j.canlet.2022.216037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death. The mechanisms for male propensity in HCC incidence, prognosis and treatment responses are complicated and remain inconclusive. Sex-biased molecular signatures in carcinogenesis, viral infections and immune responses have been studied predominantly within the context of sex hormones effects. This review integrates current knowledge on the mechanisms through which the hormones regulate HCC development in sexually dimorphic fashion. Firstly, the androgen/androgen receptor (AR) accelerate cell proliferation and virus infection, especially during the initial stage of HCC, while estrogen/estrogen receptor (ER) function in an opposite way to induce cell apoptosis and immune responses. Interestingly, the controversial effects of AR in late stage of HCC metastasis are summarized and the reasons are attributed to inconsistent cancer grading or experimental models between the studies. In addition, the new insights into these intricate cellular and molecular mechanisms underlying sexual dimorphism are fully discussed. A detailed understanding of sex hormones-associated regulation to male predominance in HCC may help to develop personalized therapeutic strategies in high-risk populations.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - JinFeng Wu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - QiuMei Wu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - XiangJuan Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - ShuaiCai Lin
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - WanLi Ran
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Li Zhu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - ChengYan Tang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xing Wang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
8
|
Chun KH. Molecular Targets and Signaling Pathways of microRNA-122 in Hepatocellular Carcinoma. Pharmaceutics 2022; 14:1380. [PMID: 35890276 PMCID: PMC9316959 DOI: 10.3390/pharmaceutics14071380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading global causes of cancer mortality. MicroRNAs (miRNAs) are small interfering RNAs that alleviate the levels of protein expression by suppressing translation, inducing mRNA cleavage, and promoting mRNA degradation. miR-122 is the most abundant miRNA in the liver and is responsible for several liver-specific functions, including metabolism, cellular growth and differentiation, and hepatitis virus replication. Recent studies have shown that aberrant regulation of miR-122 is a key factor contributing to the development of HCC. In this review, the signaling pathways and the molecular targets of miR-122 involved in the progression of HCC have been summarized, and the importance of miR-122 in therapy has been discussed.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea
| |
Collapse
|