1
|
Sun J, Corradini S, Azab F, Shokeen M, Muz B, Miari KE, Maksimos M, Diedrich C, Asare O, Alhallak K, Park C, Lubben B, Chen Y, Adebayo O, Bash H, Kelley S, Fiala M, Bender DE, Zhou H, Wang S, Vij R, Williams MTS, Azab AK. IL-10R inhibition reprograms tumor-associated macrophages and reverses drug resistance in multiple myeloma. Leukemia 2024; 38:2355-2365. [PMID: 39215060 PMCID: PMC11518999 DOI: 10.1038/s41375-024-02391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Multiple myeloma (MM) is the cancer of plasma cells within the bone marrow and remains incurable. Tumor-associated macrophages (TAMs) within the tumor microenvironment often display a pro-tumor phenotype and correlate with tumor proliferation, survival, and therapy resistance. IL-10 is a key immunosuppressive cytokine that leads to recruitment and development of TAMs. In this study, we investigated the role of IL-10 in MM TAM development as well as the therapeutic application of IL-10/IL-10R/STAT3 signaling inhibition. We demonstrated that IL-10 is overexpressed in MM BM and mediates M2-like polarization of TAMs in patient BM, 3D co-cultures in vitro, and mouse models. In turn, TAMs promote MM proliferation and drug resistance, both in vitro and in vivo. Moreover, inhibition of IL-10/IL-10R/STAT3 axis using a blocking IL-10R monoclonal antibody and STAT3 protein degrader/PROTAC prevented M2 polarization of TAMs and the consequent TAM-induced proliferation of MM, and re-sensitized MM to therapy, in vitro and in vivo. Therefore, our findings suggest that inhibition of IL-10/IL-10R/STAT3 axis is a novel therapeutic strategy with monotherapy efficacy and can be further combined with current anti-MM therapy, such as immunomodulatory drugs, to overcome drug resistance. Future investigation is warranted to evaluate the potential of such therapy in MM patients.
Collapse
Affiliation(s)
- Jennifer Sun
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO, USA
| | - Stefan Corradini
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Feda Azab
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Monica Shokeen
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Katerina E Miari
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Mina Maksimos
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Camila Diedrich
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Obed Asare
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kinan Alhallak
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO, USA
| | - Chaelee Park
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Berit Lubben
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Yixuan Chen
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ola Adebayo
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Hannah Bash
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Sarah Kelley
- Department of Medicine, Oncology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Mark Fiala
- Department of Medicine, Oncology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Diane E Bender
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Haibin Zhou
- Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, USA
| | - Shaomeng Wang
- Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ravi Vij
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO, USA
- Department of Medicine, Oncology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Mark T S Williams
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO, USA.
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO, USA.
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Gunes EG, Gunes M, Yu J, Janakiram M. Targeting cancer stem cells in multiple myeloma. Trends Cancer 2024; 10:733-748. [PMID: 38971642 DOI: 10.1016/j.trecan.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
Multiple myeloma (MM) is a hematological malignancy of bone marrow (BM) plasma cells with excessive clonal expansion and is associated with the overproduction of light-chain or monoclonal immunoglobulins (Igs). MM remains incurable, with high rates of relapses and refractory disease after first-line treatment. Cancer stem cells (CSCs) have been implicated in drug resistance in MM; however, the evidence for CSCs in MM is not adequate, partly due to a lack of uniformity in the definitions of multiple myeloma stem cells (MMSCs). We review advances in understanding MMSCs and their role in drug resistance to MM therapies. We also discuss novel therapeutic strategies to overcome MMSC-mediated relapses and drug resistance.
Collapse
Affiliation(s)
- Emine Gulsen Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Los Angeles, CA 91010, USA; Toni Stephenson Lymphoma Center, City of Hope, Los Angeles, CA 91010, USA.
| | - Metin Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, Beckman Research Institute, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Murali Janakiram
- Department of Hematology, Division of Myeloma, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| |
Collapse
|
3
|
Uckun FM, Qazi S. Upregulated Expression of ERBB2/HER2 in Multiple Myeloma as a Predictor of Poor Survival Outcomes. Int J Mol Sci 2023; 24:9943. [PMID: 37373090 DOI: 10.3390/ijms24129943] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The main goal of the present study was to examine if the RNA-sequencing (RNAseq)-based ERBB2/HER2 expression level in malignant plasma cells from multiple myeloma (MM) patients has clinical significance for treatment outcomes and survival. We examined the relationship between the RNAseq-based ERBB2 messenger ribonucleic acid (mRNA) levels in malignant plasma cells and survival outcomes in 787 MM patients treated on contemporary standard regimens. ERBB2 was expressed at significantly higher levels than ERBB1 as well as ERBB3 across all three stages of the disease. Upregulated expression of ERBB2 mRNA in MM cells was correlated with amplified expression of mRNAs for transcription factors (TF) that recognize the ERBB2 gene promoter sites. Patients with higher levels of ERBB2 mRNA in their malignant plasma cells experienced significantly increased cancer mortality, shorter progression-free survival, and worse overall survival than other patients. The adverse impact of high ERBB2 expression on patient survival outcomes remained significant in multivariate Cox proportional hazards models that accounted for the effects of other prognostic factors. To the best of our knowledge, this is the first demonstration of an adverse prognostic impact of high-level ERBB2 expression in MM patients. Our results encourage further evaluation of the prognostic significance of high-level ERBB2 mRNA expression and the clinical potential of ERBB2-targeting therapeutics as personalized medicines to overcome cancer drug resistance in high-risk as well as relapsed/refractory MM.
Collapse
Affiliation(s)
- Fatih M Uckun
- Immuno-Oncology Program, Ares Pharmaceuticals, St. Paul, MN 55110, USA
| | - Sanjive Qazi
- Immuno-Oncology Program, Ares Pharmaceuticals, St. Paul, MN 55110, USA
| |
Collapse
|
4
|
Wang S, Zhao X, Wu S, Cui D, Xu Z. Myeloid-derived suppressor cells: key immunosuppressive regulators and therapeutic targets in hematological malignancies. Biomark Res 2023; 11:34. [PMID: 36978204 PMCID: PMC10049909 DOI: 10.1186/s40364-023-00475-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The immunosuppressive tumor microenvironment (TME) supports the development of tumors and limits tumor immunotherapy, including hematological malignancies. Hematological malignancies remain a major public health issue with high morbidity and mortality worldwide. As an important component of immunosuppressive regulators, the phenotypic characteristics and prognostic value of myeloid-derived suppressor cells (MDSCs) have received much attention. A variety of MDSC-targeting therapeutic approaches have produced encouraging outcomes. However, the use of various MDSC-targeted treatment strategies in hematologic malignancies is still difficult due to the heterogeneity of hematologic malignancies and the complexity of the immune system. In this review, we summarize the biological functions of MDSCs and further provide a summary of the phenotypes and suppressive mechanisms of MDSC populations expanded in various types of hematological malignancy contexts. Moreover, we discussed the clinical correlation between MDSCs and the diagnosis of malignant hematological disease, as well as the drugs targeting MDSCs, and focused on summarizing the therapeutic strategies in combination with other immunotherapies, such as various immune checkpoint inhibitors (ICIs), that are under active investigation. We highlight the new direction of targeting MDSCs to improve the therapeutic efficacy of tumors.
Collapse
Affiliation(s)
- Shifen Wang
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingyun Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siwen Wu
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhenshu Xu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
5
|
Uckun FM, Qazi S. ERBB1/EGFR and JAK3 Tyrosine Kinases as Potential Therapeutic Targets in High-Risk Multiple Myeloma. ONCO 2022; 2:282-304. [PMID: 36311273 PMCID: PMC9610889 DOI: 10.3390/onco2040016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Our main objective was to identify abundantly expressed tyrosine kinases in multiple myeloma (MM) as potential therapeutic targets. We first compared the transcriptomes of malignant plasma cells from newly diagnosed MM patients who were risk-categorized based on the patient-specific EMC-92/SKY-92 gene expression signature values vs. normal plasma cells from healthy volunteers using archived datasets from the HOVON65/GMMG-HD4 randomized Phase 3 study evaluating the clinical efficacy of bortezomib induction/maintenance versus classic cytotoxic drugs and thalidomide maintenance. In particular, ERBB1/EGFR was significantly overexpressed in MM cells in comparison to normal control plasma cells, and it was differentially overexpressed in MM cells from high-risk patients. Amplified expression of EGFR/ERBB1 mRNA in MM cells was positively correlated with increased expression levels of mRNAs for several DNA binding proteins and transcription factors with known upregulating activity on EGFR/ERBB1 gene expression. MM patients with the highest ERBB1/EGFR expression level had significantly shorter PFS and OS times than patients with the lowest ERBB1/EGFR expression level. High expression levels of EGFR/ERBB1 were associated with significantly increased hazard ratios for unfavorable PFS and OS outcomes in both univariate and multivariate Cox proportional hazards models. The impact of high EGFR/ERBB1 expression on the PFS and OS outcomes remained significant even after accounting for the prognostic effects of other covariates. These results regarding the prognostic effect of EGFR/ERBB1 expression were validated using the MMRF-CoMMpass RNAseq dataset generated in patients treated with more recently applied drug combinations included in contemporary induction regimens. Our findings provide new insights regarding the molecular mechanism and potential clinical significance of upregulated EGFR/ERBB1 expression in MM.
Collapse
Affiliation(s)
- Fatih M. Uckun
- Immuno-Oncology Program, Ares Pharmaceuticals, St. Paul, MN 55110, USA
- Division of Hematology-Oncology, Department of Pediatrics and Developmental Therapeutics Program, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine (USC KSOM), Los Angeles, CA 90027, USA
| | - Sanjive Qazi
- Immuno-Oncology Program, Ares Pharmaceuticals, St. Paul, MN 55110, USA
- Division of Hematology-Oncology, Department of Pediatrics and Developmental Therapeutics Program, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine (USC KSOM), Los Angeles, CA 90027, USA
| |
Collapse
|
6
|
Hervás-Salcedo R, Martín-Antonio B. A Journey through the Inter-Cellular Interactions in the Bone Marrow in Multiple Myeloma: Implications for the Next Generation of Treatments. Cancers (Basel) 2022; 14:3796. [PMID: 35954459 PMCID: PMC9367481 DOI: 10.3390/cancers14153796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
Tumors are composed of a plethora of extracellular matrix, tumor and non-tumor cells that form a tumor microenvironment (TME) that nurtures the tumor cells and creates a favorable environment where tumor cells grow and proliferate. In multiple myeloma (MM), the TME is the bone marrow (BM). Non-tumor cells can belong either to the non-hematological compartment that secretes soluble mediators to create a favorable environment for MM cells to grow, or to the immune cell compartment that perform an anti-MM activity in healthy conditions. Indeed, marrow-infiltrating lymphocytes (MILs) are associated with a good prognosis in MM patients and have served as the basis for developing different immunotherapy strategies. However, MM cells and other cells in the BM can polarize their phenotype and activity, creating an immunosuppressive environment where immune cells do not perform their cytotoxic activity properly, promoting tumor progression. Understanding cell-cell interactions in the BM and their impact on MM proliferation and the performance of tumor surveillance will help in designing efficient anti-MM therapies. Here, we take a journey through the BM, describing the interactions of MM cells with cells of the non-hematological and hematological compartment to highlight their impact on MM progression and the development of novel MM treatments.
Collapse
Affiliation(s)
| | - Beatriz Martín-Antonio
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz (IIS-FJD), University Autonomous of Madrid (UAM), 28040 Madrid, Spain
| |
Collapse
|
7
|
Yu S, Ren X, Li L. Myeloid-derived suppressor cells in hematologic malignancies: two sides of the same coin. Exp Hematol Oncol 2022; 11:43. [PMID: 35854339 PMCID: PMC9295421 DOI: 10.1186/s40164-022-00296-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of bone marrow cells originating from immature myeloid cells. They exert potent immunosuppressive activity and are closely associated with the development of various diseases such as malignancies, infections, and inflammation. In malignant tumors, MDSCs, one of the most dominant cellular components comprising the tumor microenvironment, play a crucial role in tumor growth, drug resistance, recurrence, and immune escape. Although the role of MDSCs in solid tumors is currently being extensively studied, little is known about their role in hematologic malignancies. In this review, we comprehensively summarized and reviewed the different roles of MDSCs in hematologic malignancies and hematopoietic stem cell transplantation, and finally discussed current targeted therapeutic strategies.Affiliation: Kindly check and confirm the processed affiliations are correct. Amend if any.correct
Collapse
Affiliation(s)
- Shunjie Yu
- Department of Hematology, Tianjin Medical University General Hospital, Heping district 154 Anshan Road, Tianjin, China
| | - Xiaotong Ren
- Department of Hematology, Tianjin Medical University General Hospital, Heping district 154 Anshan Road, Tianjin, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Heping district 154 Anshan Road, Tianjin, China.
| |
Collapse
|
8
|
Ran Q, Xu D, Wang Q, Wang D. Hypermethylation of the Promoter Region of miR-23 Enhances the Metastasis and Proliferation of Multiple Myeloma Cells via the Aberrant Expression of uPA. Front Oncol 2022; 12:835299. [PMID: 35707350 PMCID: PMC9189361 DOI: 10.3389/fonc.2022.835299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple myeloma has a long course, with no obvious symptoms in the early stages. However, advanced stages are characterized by injury to the bone system and represent a severe threat to human health. The results of the present work indicate that the hypermethylation of miR-23 promoter mediates the aberrant expression of uPA/PLAU (urokinase plasminogen activator, uPA) in multiple myeloma cells. miR-23, a microRNA that potentially targets uPA’s 3’UTR, was predicted by the online tool miRDB. The endogenous expressions of uPA and miR-23 are related to disease severity in human patients, and the expression of miR-23 is negatively related to uPA expression. The hypermethylation of the promoter region of miR-23 is a promising mechanism to explain the low level of miR-23 or aberrant uPA expression associated with disease severity. Overexpression of miR-23 inhibited the expression of uPA by targeting the 3’UTR of uPA, not only in MM cell lines, but also in patient-derived cell lines. Overexpression of miR-23 also inhibited in vitro and in vivo invasion of MM cells in a nude mouse model. The results therefore extend our knowledge about uPA in MM and may assist in the development of more effective therapeutic strategies for MM treatment.
Collapse
Affiliation(s)
- Qijie Ran
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
- *Correspondence: Qijie Ran, ; Dongsheng Wang,
| | - Dehong Xu
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
| | - Qi Wang
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
| | - Dongsheng Wang
- Department of Neurosurgery, The Fifth People’s Hospital of Dalian, Dalian, China
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian City, China
- *Correspondence: Qijie Ran, ; Dongsheng Wang,
| |
Collapse
|