1
|
Zhuo R, Zhang Z, Chen Y, Li G, Du S, Guo X, Yang R, Tao Y, Li X, Fang F, Xie Y, Wu D, Yang Y, Yang C, Yin H, Qian G, Wang H, Yu J, Jia S, Zhu F, Feng C, Wang J, Xu Y, Li Z, Shi L, Wang X, Pan J, Wang J. CDK5RAP3 is a novel super-enhancer-driven gene activated by master TFs and regulates ER-Phagy in neuroblastoma. Cancer Lett 2024; 591:216882. [PMID: 38636893 DOI: 10.1016/j.canlet.2024.216882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Super enhancers (SEs) are genomic regions comprising multiple closely spaced enhancers, typically occupied by a high density of cell-type-specific master transcription factors (TFs) and frequently enriched in key oncogenes in various tumors, including neuroblastoma (NB), one of the most prevalent malignant solid tumors in children originating from the neural crest. Cyclin-dependent kinase 5 regulatory subunit-associated protein 3 (CDK5RAP3) is a newly identified super-enhancer-driven gene regulated by master TFs in NB; however, its function in NB remains unclear. Through an integrated study of publicly available datasets and microarrays, we observed a significantly elevated CDK5RAP3 expression level in NB, associated with poor patient prognosis. Further research demonstrated that CDK5RAP3 promotes the growth of NB cells, both in vitro and in vivo. Mechanistically, defective CDK5RAP3 interfered with the UFMylation system, thereby triggering endoplasmic reticulum (ER) phagy. Additionally, we provide evidence that CDK5RAP3 maintains the stability of MEIS2, a master TF in NB, and in turn, contributes to the high expression of CDK5RAP3. Overall, our findings shed light on the molecular mechanisms by which CDK5RAP3 promotes tumor progression and suggest that its inhibition may represent a novel therapeutic strategy for NB.
Collapse
Affiliation(s)
- Ran Zhuo
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China; Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yanling Chen
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Shibei Du
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Xinyi Guo
- Department of Infection Management, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Randong Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China; Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yi Xie
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yang Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Chun Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Hongli Yin
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Hairong Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Juanjuan Yu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Siqi Jia
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Frank Zhu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, China
| | - Chenxi Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Jianwei Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yunyun Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, China
| | - Xiaodong Wang
- Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China.
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China; Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China.
| |
Collapse
|
2
|
Wan L, Fan Y, Wu T, Liu Y, Zhang R, Chen S, Zhao C, Xue Y. Endoplasmic reticulum stress-related genes as prognostic and immunogenic biomarkers in prostate cancer. Eur J Med Res 2024; 29:242. [PMID: 38643190 PMCID: PMC11031923 DOI: 10.1186/s40001-024-01818-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/28/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND The metastasis and aggressive nature of prostate cancer (PCa) has become a major malignancy related threat that concerns men's health. The efficacy of immune monotherapy against PCa is questionable due to its lymphocyte-suppressive nature. METHOD Endoplasmic reticulum stress- (ERS-) and PCa-prognosis-related genes were obtained from the Molecular Signatures Database and the Cancer Genome Atlas database. The expression, prognosis and immune infiltration values of key genes were explored by "survival R package", "rms", "xCELL algorithm", and univariate-multivariate Cox and LASSO regression analyses. The "consensus cluster plus R package" was used for cluster analysis. RESULT As ERS-related genes, ERLIN2 and CDK5RAP3 showed significant expressional, prognostic and clinic-pathologic values. They were defined as the key genes significantly correlated with immune infiltration and response. The nomogram was constructed with T-stage and primary treatment outcome, and the risk-prognostic model was constructed in the following way: Riskscore = (- 0.1918) * ERLIN2 + (0.5254) * CDK5RAP3. Subsequently, prognostic subgroups based on key genes classified the high-risk group as a pro-cancer subgroup that had lower mutation rates of critical genes (SPOP and MUC16), multiple low-expression immune-relevant molecules, and differences in macrophages (M1 and M2) expressions. Finally, ERLIN2 as an anti-oncogene and CDK5RAP3 as a pro-oncogene were further confirmed by cell phenotype assays and immunohistochemistry. CONCLUSION We identified ERLIN2 and CDK5RAP3 as ERS-related genes with important prognostic and immunologic values, and classified patients between high- and low-risk subgroups, which provided new prognostic markers, immunotherapeutic targets, and basis for prognostic assessments.
Collapse
Affiliation(s)
- Lilin Wan
- Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Department of Urology, Zhongda Hospital Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Yunxia Fan
- Department of Urology, Jintan Affiliated Hospital of Jiangsu University, No.500, Jintan Avenue, Jintan District, Changzhou, 213200, China
| | - Tiange Wu
- Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Department of Urology, Zhongda Hospital Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Yifan Liu
- Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Department of Urology, Zhongda Hospital Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Ruixin Zhang
- Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Saisai Chen
- Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China.
- Department of Urology, Zhongda Hospital Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China.
| | - Chenggui Zhao
- Department of Laboratory, Zhongda Hospital Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China.
| | - Yifeng Xue
- Department of Urology, Jintan Affiliated Hospital of Jiangsu University, No.500, Jintan Avenue, Jintan District, Changzhou, 213200, China.
| |
Collapse
|
3
|
Deshmukh K, Apte U. The Role of Endoplasmic Reticulum Stress Response in Liver Regeneration. Semin Liver Dis 2023; 43:279-292. [PMID: 37451282 PMCID: PMC10942737 DOI: 10.1055/a-2129-8977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Exposure to hepatotoxic chemicals is involved in liver disease-related morbidity and mortality worldwide. The liver responds to damage by triggering compensatory hepatic regeneration. Physical agent or chemical-induced liver damage disrupts hepatocyte proteostasis, including endoplasmic reticulum (ER) homeostasis. Post-liver injury ER experiences a homeostatic imbalance, followed by active ER stress response signaling. Activated ER stress response causes selective upregulation of stress response genes and downregulation of many hepatocyte genes. Acetaminophen overdose, carbon tetrachloride, acute and chronic alcohol exposure, and physical injury activate the ER stress response, but details about the cellular consequences of the ER stress response on liver regeneration remain unclear. The current data indicate that inhibiting the ER stress response after partial hepatectomy-induced liver damage promotes liver regeneration, whereas inhibiting the ER stress response after chemical-induced hepatotoxicity impairs liver regeneration. This review summarizes key findings and emphasizes the knowledge gaps in the role of ER stress in injury and regeneration.
Collapse
Affiliation(s)
- Kshitij Deshmukh
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
4
|
Zhang J, Zhao Y, Zhang Y, Gao Y, Li S, Chang C, Gao X, Zhao J, Yang G. Alpha lipoic acid treatment in late middle age improves cognitive function: Proteomic analysis of the protective mechanisms in the hippocampus. Neurosci Lett 2023; 798:137098. [PMID: 36708754 DOI: 10.1016/j.neulet.2023.137098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Alpha lipoic acid (ALA), a powerful antioxidant, has the potential to relieve age-related cognitive impairment and neurodegenerative disease. Clinical randomized controlled studies have demonstrated the cognitive improvement effects of lipoic acid in Alzheimer's disease (AD). In the present study, we examined the effects of ALA on cognitive function in ageing mice and its protective mechanisms. Eighteen-month-old male C57BL6/J mice received ALA or normal saline for 2 months. The Morris water maze test revealed improved cognitive function in animals that received ALA. Furthermore, tandem Mass Tags (TMT) based liquid chromotography with mass spectrometry/mass spectrometry (LC-MS/MS) was established to identify the target proteins. The results showed that 10 proteins were changed significantly. Gene Ontology (GO) analysis indicated that the upregulated proteins were enriched in terminal bouton, synaptic transmission and lipid transporter activity while the down-regulated proteins were involved in nuclear transcription factor-κB binding, apoptosis and mitogen-activated protein kinase binding. Based on the GO results, two upregulated proteins oxysterol-binding protein-related protein 10 (OSBPL10) and oligophrenin 1 (OPHN1), and one downregulated protein, CDK5 regulatory subunit-associated protein 3 (CDK5rap3), were validated through Western blotting. The results were consistent with the proteomic results. Modulation of synaptic transmission, lipid transporter activity and neuroinflammation appears to be the mechanisms of ALA in the aged brain.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Geriatrics, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yuan Zhao
- Department of Geriatrics, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yidan Zhang
- Department of Geriatrics, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Ya Gao
- Department of Geriatrics, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Shuyue Li
- Department of Geriatrics, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Cui Chang
- Department of Geriatrics, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xuan Gao
- Department of Geriatrics, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jingru Zhao
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050000, China
| | - Guofeng Yang
- Department of Geriatrics, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
5
|
Sulimenko V, Dráberová E, Dráber P. γ-Tubulin in microtubule nucleation and beyond. Front Cell Dev Biol 2022; 10:880761. [PMID: 36158181 PMCID: PMC9503634 DOI: 10.3389/fcell.2022.880761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules composed of αβ-tubulin dimers are dynamic cytoskeletal polymers that play key roles in essential cellular processes such as cell division, organelle positioning, intracellular transport, and cell migration. γ-Tubulin is a highly conserved member of the tubulin family that is required for microtubule nucleation. γ-Tubulin, together with its associated proteins, forms the γ-tubulin ring complex (γ-TuRC), that templates microtubules. Here we review recent advances in the structure of γ-TuRC, its activation, and centrosomal recruitment. This provides new mechanistic insights into the molecular mechanism of microtubule nucleation. Accumulating data suggest that γ-tubulin also has other, less well understood functions. We discuss emerging evidence that γ-tubulin can form oligomers and filaments, has specific nuclear functions, and might be involved in centrosomal cross-talk between microtubules and microfilaments.
Collapse
Affiliation(s)
| | | | - Pavel Dráber
- *Correspondence: Vadym Sulimenko, ; Pavel Dráber,
| |
Collapse
|