1
|
Stinson JA, Barbosa MMP, Sheen A, Momin N, Fink E, Hampel J, Selting KA, Kamerer RL, Bailey KL, Wittrup KD, Fan TM. Tumor-Localized Interleukin-2 and Interleukin-12 Combine with Radiation Therapy to Safely Potentiate Regression of Advanced Malignant Melanoma in Pet Dogs. Clin Cancer Res 2024; 30:4029-4043. [PMID: 38980919 PMCID: PMC11398984 DOI: 10.1158/1078-0432.ccr-24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE Cytokines IL2 and IL12 exhibit potent anticancer activity but suffer a narrow therapeutic window due to off-tumor immune cell activation. Engineering cytokines with the ability to bind and associate with tumor collagen after intratumoral injection potentiated response without toxicity in mice and was previously safe in pet dogs with sarcoma. Here, we sought to test the efficacy of this approach in dogs with advanced melanoma. PATIENTS AND METHODS This study examined 15 client-owned dogs with histologically or cytologically confirmed malignant melanoma that received a single 9-Gy fraction of radiotherapy, followed by six cycles of combined collagen-anchored IL2 and IL12 therapy every 2 weeks. Cytokine dosing followed a 3 + 3 dose escalation design, with the initial cytokine dose chosen from prior evaluation in canine sarcomas. No exclusion criteria for tumor stage or metastatic burden, age, weight, or neuter status were applied for this trial. RESULTS Median survival regardless of the tumor stage or dose level was 256 days, and 10/13 (76.9%) dogs that completed treatment had CT-measured tumor regression at the treated lesion. In dogs with metastatic disease, 8/13 (61.5%) had partial responses across their combined lesions, which is evidence of locoregional response. Profiling by NanoString of treatment-resistant dogs revealed that B2m loss was predictive of poor response to this therapy. CONCLUSIONS Collectively, these results confirm the ability of locally administered tumor-anchored cytokines to potentiate responses at regional disease sites when combined with radiation. This evidence supports the clinical translation of this approach and highlights the utility of comparative investigation in canine cancers.
Collapse
Affiliation(s)
- Jordan A Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Matheus Moreno P Barbosa
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth Fink
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jordan Hampel
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Kim A Selting
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Rebecca L Kamerer
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | - Karl D Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
2
|
Li J, Yao J, Qi L. Identification of TUBB2A as a Cancer-Immunity Cycle-Related Therapeutic Target in Triple-Negative Breast Cancer. Mol Biotechnol 2024; 66:2467-2480. [PMID: 37742297 DOI: 10.1007/s12033-023-00880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVE Triple negative breast cancer (TNBC) is a malignant subtype of breast cancer characterized by the absence of ER, PR, and HER2. We aimed to explore target gene from the perspective of cancer-immunity cycle, providing insights into treatment of TNBC. METHODS We obtained TNBC samples from METABRIC database and downloaded 4 datasets from GEO database, as well as an IMvigor210 dataset. WGCNA was applied to screen genes associated with cancer-immunity cycle in TNBC. GO, KEGG and GSEA analyses were performed to explore the target gene's potential functions and pathways. The binding motifs with transcription factors were predicted with FIMO. Immune infiltration analysis was conducted by CIBERSORT. RESULTS TUBB2A was screened out as our target gene which was negatively correlated with T cell recruitment in cancer-immunity cycle. TUBB2A expressed higher in TNBC samples than in normal samples. High expression of TUBB2A was associated with poor prognosis of TNBC. 12 transcription factors and 5 miRNAs might regulate TUBB2A's expression. The infiltration ratios of 7 types of immune cells such as CD8+ T cells, naive CD4+ T cells and activated memory CD4+ T cells were significantly lower in TUBB2A high expression group. TUBB2A was a potential drug target. CONCLUSION We screened a cancer-immunity cycle-related gene TUBB2A which was negatively correlated with T cell recruiting in TNBC. TUBB2A expressed higher in TNBC samples than in normal samples, associated with poor prognosis.
Collapse
Affiliation(s)
- Jia Li
- Department of Breast Surgical Oncology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Xinghualing District, Taiyuan, 030013, Shanxi Province, People's Republic of China
| | - Jingchun Yao
- Department of Head and Neck, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Xinghualing District, Taiyuan, 030013, Shanxi Province, People's Republic of China
| | - Liqiang Qi
- Department of Breast Surgical Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan, Huawei South Road, Chaoyang District, Beijing, 100021, People's Republic of China.
| |
Collapse
|
3
|
Yasaswi PS, Nijhawan HP, Prabhakar B, Dutt S, Yadav KS. Emerging drug delivery systems to alter tumor immunosuppressive microenvironment: Overcoming the challenges in immunotherapy for glioblastoma. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:165-182. [PMID: 39461751 DOI: 10.1016/bs.pmbts.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Glioblastoma (GBM) is a highly proliferative, lethal cancer of the brain. The median survival at eight months is ca. 6.8%. Resistance towards the anti-glioblastoma drug temozolomide (TMZ), recurrence of cancer cells, blood-tumor brain barrier (BTBB), blood-brain barrier (BBB), and tumor immunosuppression are major challenges in treating GBM. Drug delivery systems employing TMZ and other anti-cancer drugs and combination therapy (temozolomide with immunotherapeutics) are under pre-clinical and clinical studies, respectively. Immunotherapeutics have emerged as a dominant mechanism to silence tumor development and dissemination. Paradoxically, immunotherapy has witnessed failure in treating GBM. This is due to the unique immunosuppressive microenvironment in GBM. Future immunotherapeutics with inherent tumor environment-modulating properties have to be identified. In this review, we discuss recent delivery systems and devices engineered to deliver immunotherapeutics with the ability to alter/silence tumor immune suppression.
Collapse
Affiliation(s)
- P Soma Yasaswi
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai, India
| | - Harsh P Nijhawan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai, India
| | - Shilpee Dutt
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai, India.
| |
Collapse
|
4
|
Bergman PJ. Cancer Immunotherapy. Vet Clin North Am Small Anim Pract 2024; 54:441-468. [PMID: 38158304 DOI: 10.1016/j.cvsm.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The enhanced understanding of immunology experienced over the last 5 decades afforded through the tools of molecular biology has recently translated into cancer immunotherapy becoming one of the most exciting and rapidly expanding fields. Human cancer immunotherapy is now recognized as one of the pillars of treatment alongside surgery, radiation, and chemotherapy. The field of veterinary cancer immunotherapy has also rapidly advanced in the last decade with a handful of commercially available products and a plethora of investigational cancer immunotherapies, which will hopefully expand our veterinary oncology treatment toolkit over time.
Collapse
Affiliation(s)
- Philip J Bergman
- Clinical Studies, VCA; Katonah Bedford Veterinary Center, Bedford Hills, NY, USA; Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Stinson JA, Barbosa MMP, Sheen A, Momin N, Fink E, Hampel J, Selting K, Kamerer R, Bailey KL, Wittrup KD, Fan TM. Tumor-localized interleukin-2 and interleukin-12 combine with radiation therapy to safely potentiate regression of advanced malignant melanoma in pet dogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579965. [PMID: 38405716 PMCID: PMC10888855 DOI: 10.1101/2024.02.12.579965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The clinical use of interleukin-2 and -12 cytokines against cancer is limited by their narrow therapeutic windows due to on-target, off-tumor activation of immune cells when delivered systemically. Engineering IL-2 and IL-12 to bind to extracellular matrix collagen allows these cytokines to be retained within tumors after intralesional injection, overcoming these clinical safety challenges. While this approach has potentiated responses in syngeneic mouse tumors without toxicity, the complex tumor-immune interactions in human cancers are difficult to recapitulate in mouse models of cancer. This has driven an increased role for comparative oncology clinical trials in companion (pet) dogs with spontaneous cancers that feature analogous tumor and immune biology to human cancers. Here, we report the results from a dose-escalation clinical trial of intratumoral collagen-binding IL-2 and IL-12 cytokines in pet dogs with malignant melanoma, observing encouraging local and regional responses to therapy that may suggest human clinical benefit with this approach.
Collapse
Affiliation(s)
- Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth Fink
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Jordan Hampel
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kimberly Selting
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Rebecca Kamerer
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | | | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
6
|
Stevenson VB, Gudenschwager-Basso EK, Klahn S, LeRoith T, Huckle WR. Inhibitory checkpoint molecule mRNA expression in canine soft tissue sarcoma. Vet Comp Oncol 2023; 21:709-716. [PMID: 37680007 PMCID: PMC10841275 DOI: 10.1111/vco.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
Canine soft tissue sarcomas (STS) are common neoplasms and considered immune deserts. Tumour infiltrating lymphocytes are sparse in STS and, when present, tend to organize around blood vessels or at the periphery of the neoplasm. This pattern is associated with an immunosuppressive tumour microenvironment linked to overexpression of molecules of the PD-axis. PD-1, PD-L1 and PD-L2 expression correlates with malignancy and poor prognosis in other neoplasms in humans and dogs, but little is known about their role in canine STS, their relationship to tumour grade, and how different therapies affect expression. The objective of this study was to evaluate the expression of checkpoint molecules across STS tumour grades and after tumour ablation treatment. Gene expression analysis was performed by reverse-transcriptase real-time quantitative PCR in soft tissue sarcomas that underwent histotripsy and from histologic specimens of STS from the Virginia Tech Animal Laboratory Services archives. The expression of PD-1, PD-L1 and PD-L2 was detected in untreated STS tissue representing grades 1, 2, and 3. Numerically decreased expression of all markers was observed in tissue sampled from the treatment interface relative to untreated areas of the tumour. The relatively lower expression of these checkpoint molecules at the periphery of the treated area may be related to liquefactive necrosis induced by the histotripsy treatment, and would potentially allow TILs to infiltrate the tumour. Relative increases of these checkpoint molecules in tumours of a higher grade and alongside immune cell infiltration are consistent with previous reports that associate their expression with malignancy.
Collapse
Affiliation(s)
- Valentina Beatriz Stevenson
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Erwin Kristobal Gudenschwager-Basso
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Shawna Klahn
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - William R. Huckle
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
7
|
Marconato L, Tiraboschi L, Aralla M, Sabattini S, Melacarne A, Agnoli C, Balboni A, Salvi M, Foglia A, Punzi S, Romagnoli N, Rescigno M. A Phase 2, Single-Arm, Open-Label Clinical Trial on Adjuvant Peptide-Based Vaccination in Dogs with Aggressive Hemangiosarcoma Undergoing Surgery and Chemotherapy. Cancers (Basel) 2023; 15:4209. [PMID: 37686485 PMCID: PMC10486958 DOI: 10.3390/cancers15174209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
To test the antitumor effect and safety of peptide-based anticancer vaccination in dogs with hemangiosarcoma undergoing the standard of care (SOC; surgery and doxorubicin), canine hemangiosarcoma cells were infected with Salmonella typhi Ty21a to release immunogenic endoplasmic reticulum stress-related peptides into the extracellular milieu via CX43 hemichannels opening. The infected tumor cell secretome constituted the vaccine. Following the SOC, dogs with biologically aggressive hemangiosarcoma were vaccinated a total of five times, once every 3 weeks, and were followed up with serial imaging. A retrospective population of dogs undergoing the SOC alone served as controls. The primary endpoints were the time to progression (TTP) and overall survival (OS), and the secondary endpoints were toxicity and immune responses. A total of 28 dogs were vaccinated along with the SOC, and 32 received only the SOC. A tumor-specific humoral response along with a vaccine-specific T-cell response was observed. Toxicity did not occur. The TTP and OS were significantly longer in vaccinated versus unvaccinated dogs (TTP: 195 vs. 160 days, respectively; p = 0.001; OS: 276 vs. 175 days, respectively; p = 0.002). One-year survival rates were 35.7% and 6.3% for vaccinated and unvaccinated dogs, respectively. In dogs with hemangiosarcoma undergoing the SOC, the addition of a peptide-based vaccine increased the TTP and OS, while maintaining a safe profile. Moreover, vaccinated dogs developed a tumor-specific response, supporting the feasibility of future phase three studies.
Collapse
Affiliation(s)
- Laura Marconato
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (S.S.); (C.A.); (A.B.); (A.F.); (S.P.); (N.R.)
| | - Luca Tiraboschi
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (L.T.); (A.M.); (M.S.); (M.R.)
| | - Marina Aralla
- Pronto Soccorso Veterinario Laudense, 26900 Lodi, Italy;
| | - Silvia Sabattini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (S.S.); (C.A.); (A.B.); (A.F.); (S.P.); (N.R.)
| | - Alessia Melacarne
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (L.T.); (A.M.); (M.S.); (M.R.)
| | - Chiara Agnoli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (S.S.); (C.A.); (A.B.); (A.F.); (S.P.); (N.R.)
| | - Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (S.S.); (C.A.); (A.B.); (A.F.); (S.P.); (N.R.)
| | - Marta Salvi
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (L.T.); (A.M.); (M.S.); (M.R.)
| | - Armando Foglia
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (S.S.); (C.A.); (A.B.); (A.F.); (S.P.); (N.R.)
| | - Sofia Punzi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (S.S.); (C.A.); (A.B.); (A.F.); (S.P.); (N.R.)
| | - Noemi Romagnoli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (S.S.); (C.A.); (A.B.); (A.F.); (S.P.); (N.R.)
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (L.T.); (A.M.); (M.S.); (M.R.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| |
Collapse
|
8
|
Ruger L, Yang E, Gannon J, Sheppard H, Coutermarsh-Ott S, Ziemlewicz TJ, Dervisis N, Allen IC, Daniel GB, Tuohy J, Vlaisavljevich E, Klahn S. Mechanical High-Intensity Focused Ultrasound (Histotripsy) in Dogs With Spontaneously Occurring Soft Tissue Sarcomas. IEEE Trans Biomed Eng 2023; 70:768-779. [PMID: 36006886 PMCID: PMC9969335 DOI: 10.1109/tbme.2022.3201709] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Histotripsy is a non-invasive focused ultrasound therapy that uses controlled acoustic cavitation to mechanically disintegrate tissue. To date, there are no reports investigating histotripsy for the treatment of soft tissue sarcoma (STS). OBJECTIVE This study aimed to investigate the in vivo feasibility of ablating STS with histotripsy and to characterize the impact of partial histotripsy ablation on the acute immunologic response in canine patients with spontaneous STS. METHODS A custom 500 kHz histotripsy system was used to treat ten dogs with naturally occurring STS. Four to six days after histotripsy, tumors were surgically resected. Safety was determined by monitoring vital signs during treatment and post-treatment physical examinations, routine lab work, and owners' reports. Ablation was characterized using radiologic and histopathologic analyses. Systemic immunological impact was evaluated by measuring changes in cytokine concentrations, and tumor microenvironment changes were evaluated by characterizing changes in infiltration with tumor-associated macrophages (TAMs) and tumor-infiltrating lymphocytes (TILs) using multiplex immunohistochemistry and differential gene expression. RESULTS Results showed histotripsy ablation was achievable and well-tolerated in all ten dogs. Immunological results showed histotripsy induced pro-inflammatory changes in the tumor microenvironment. Conclusion & Significance: Overall, this study demonstrates histotripsy's potential as a precise, non-invasive treatment for STS.
Collapse
|
9
|
Stevenson VB, Klahn S, LeRoith T, Huckle WR. Canine melanoma: A review of diagnostics and comparative mechanisms of disease and immunotolerance in the era of the immunotherapies. Front Vet Sci 2023; 9:1046636. [PMID: 36686160 PMCID: PMC9853198 DOI: 10.3389/fvets.2022.1046636] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Melanomas in humans and dogs are highly malignant and resistant to therapy. Since the first development of immunotherapies, interest in how the immune system interacts within the tumor microenvironment and plays a role in tumor development, progression, or remission has increased. Of major importance are tumor-infiltrating lymphocytes (TILs) where distribution and cell frequencies correlate with survival and therapeutic outcomes. Additionally, efforts have been made to identify subsets of TILs populations that can contribute to a tumor-promoting or tumor-inhibiting environment, such as the case with T regulatory cells versus CD8 T cells. Furthermore, cancerous cells have the capacity to express certain inhibitory checkpoint molecules, including CTLA-4, PD-L1, PD-L2, that can suppress the immune system, a property associated with poor prognosis, a high rate of recurrence, and metastasis. Comparative oncology brings insights to comprehend the mechanisms of tumorigenesis and immunotolerance in humans and dogs, contributing to the development of new therapeutic agents that can modulate the immune response against the tumor. Therapies that target signaling pathways such as mTOR and MEK/ERK that are upregulated in cancer, or immunotherapies with different approaches such as CAR-T cells engineered for specific tumor-associated antigens, DNA vaccines using human tyrosinase or CGSP-4 antigen, anti-PD-1 or -PD-L1 monoclonal antibodies that intercept their binding inhibiting the suppression of the T cells, and lymphokine-activated killer cells are already in development for treating canine tumors. This review provides concise and recent information about diagnosis, comparative mechanisms of tumor development and progression, and the current status of immunotherapies directed toward canine melanoma.
Collapse
Affiliation(s)
- Valentina B. Stevenson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Shawna Klahn
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States,Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - William R. Huckle
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States,*Correspondence: William R. Huckle ✉
| |
Collapse
|
10
|
Minoli L, Licenziato L, Kocikowski M, Cino M, Dziubek K, Iussich S, Fanelli A, Morello E, Martano M, Hupp T, Vojtesek B, Parys M, Aresu L. Development of Monoclonal Antibodies Targeting Canine PD-L1 and PD-1 and Their Clinical Relevance in Canine Apocrine Gland Anal Sac Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14246188. [PMID: 36551672 PMCID: PMC9777308 DOI: 10.3390/cancers14246188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Canine apocrine gland anal sac adenocarcinoma (AGASACA) is an aggressive canine tumor originating from the anal sac glands. Surgical resection, with or without adjuvant chemotherapy, represents the standard of care for this tumor, but the outcome is generally poor, particularly for tumors diagnosed at an advanced stage. For this reason, novel treatment options are warranted, and a few recent reports have suggested the activation of the immune checkpoint axis in canine AGASACA. In our study, we developed canine-specific monoclonal antibodies targeting PD-1 and PD-L1. A total of 41 AGASACAs with complete clinical and follow-up information were then analyzed by immunohistochemistry for the expression of the two checkpoint molecules (PD-L1 and PD-1) and the presence of tumor-infiltrating lymphocytes (CD3 and CD20), which were evaluated within the tumor bulk (intratumor) and in the surrounding stroma (peritumor). Seventeen AGASACAs (42%) expressed PD-L1 in a range between 5% and 95%. The intratumor lymphocytes were predominantly CD3+ T-cells and were positively correlated with the number of PD-1+ intratumor lymphocytes (ρ = 0.36; p = 0.02). The peritumor lymphocytes were a mixture of CD3+ and CD20+ cells with variable PD-1 expression (range 0-50%). PD-L1 expression negatively affected survival only in the subgroup of dogs treated with surgery alone (n = 14; 576 vs. 235 days). The presence of a heterogeneous lymphocytic infiltrate and the expression of PD-1 and PD-L1 molecules support the relevance of the immune microenvironment in canine AGASACAs and the potential value of immune checkpoints as promising therapeutic targets.
Collapse
Affiliation(s)
- Lucia Minoli
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Luca Licenziato
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Mikolaj Kocikowski
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80822 Gdansk, Poland
| | - Marzia Cino
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, 43100 Parma, Italy
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80822 Gdansk, Poland
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Antonella Fanelli
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Marina Martano
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, 43100 Parma, Italy
| | - Ted Hupp
- Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Maciej Parys
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
- Correspondence: (M.P.); (L.A.)
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
- Correspondence: (M.P.); (L.A.)
| |
Collapse
|
11
|
Dhawan D, Ramos-Vara JA, Utturkar SM, Ruple A, Tersey SA, Nelson JB, Cooper B, Heng HG, Ostrander EA, Parker HG, Hahn NM, Adams LG, Fulkerson CM, Childress MO, Bonney P, Royce C, Fourez LM, Enstrom AW, Ambrosius LA, Knapp DW. Identification of a naturally-occurring canine model for early detection and intervention research in high grade urothelial carcinoma. Front Oncol 2022; 12:1011969. [PMID: 36439482 PMCID: PMC9692095 DOI: 10.3389/fonc.2022.1011969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/24/2022] [Indexed: 09/23/2023] Open
Abstract
Background Early detection and intervention research is expected to improve the outcomes for patients with high grade muscle invasive urothelial carcinoma (InvUC). With limited patients in suitable high-risk study cohorts, relevant animal model research is critical. Experimental animal models often fail to adequately represent human cancer. The purpose of this study was to determine the suitability of dogs with high breed-associated risk for naturally-occurring InvUC to serve as relevant models for early detection and intervention research. The feasibility of screening and early intervention, and similarities and differences between canine and human tumors, and early and later canine tumors were determined. Methods STs (n=120) ≥ 6 years old with no outward evidence of urinary disease were screened at 6-month intervals for 3 years with physical exam, ultrasonography, and urinalysis with sediment exam. Cystoscopic biopsy was performed in dogs with positive screening tests. The pathological, clinical, and molecular characteristics of the "early" cancer detected by screening were determined. Transcriptomic signatures were compared between the early tumors and published findings in human InvUC, and to more advanced "later" canine tumors from STs who had the typical presentation of hematuria and urinary dysfunction. An early intervention trial of an oral cyclooxygenase inhibitor, deracoxib, was conducted in dogs with cancer detected through screening. Results Biopsy-confirmed bladder cancer was detected in 32 (27%) of 120 STs including InvUC (n=29, three starting as dysplasia), grade 1 noninvasive cancer (n=2), and carcinoma in situ (n=1). Transcriptomic signatures including druggable targets such as EGFR and the PI3K-AKT-mTOR pathway, were very similar between canine and human InvUC, especially within luminal and basal molecular subtypes. Marked transcriptomic differences were noted between early and later canine tumors, particularly within luminal subtype tumors. The deracoxib remission rate (42% CR+PR) compared very favorably to that with single-agent cyclooxygenase inhibitors in more advanced canine InvUC (17-25%), supporting the value of early intervention. Conclusions The study defined a novel naturally-occurring animal model to complement experimental models for early detection and intervention research in InvUC. Research incorporating the canine model is expected to lead to improved outcomes for humans, as well as pet dogs, facing bladder cancer.
Collapse
Affiliation(s)
- Deepika Dhawan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - José A. Ramos-Vara
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Sagar M. Utturkar
- Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Audrey Ruple
- Purdue University Center for Cancer Research, West Lafayette, IN, United States
- Department of Public Health, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Sarah A. Tersey
- Department of Medicine, Section of Endocrinology, Metabolism, and Diabetes, University of Chicago, Chicago, IL, United States
| | - Jennifer B. Nelson
- Department of Medicine, Section of Endocrinology, Metabolism, and Diabetes, University of Chicago, Chicago, IL, United States
| | - Bruce R. Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
| | - Hock Gan Heng
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Heidi G. Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Noah M. Hahn
- Department of Oncology and Urology, Johns Hopkins University School of Medicine, and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Larry G. Adams
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Christopher M. Fulkerson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Michael O. Childress
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Patty L. Bonney
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Christine Royce
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Lindsey M. Fourez
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Alexander W. Enstrom
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Lisbeth A. Ambrosius
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Deborah W. Knapp
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, West Lafayette, IN, United States
| |
Collapse
|
12
|
Razmara AM, Wittenburg LA, Al-Nadaf S, Toedebusch RG, Meyers FJ, Toedebusch CM. Prevalence and Clinicopathologic Features of Canine Metastatic Melanoma Involving the Central Nervous System: A Retrospective Analysis and Comparative Review. Front Oncol 2022; 12:868004. [PMID: 35692802 PMCID: PMC9186031 DOI: 10.3389/fonc.2022.868004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background Central nervous system (CNS) involvement is the leading cause of death in malignant melanoma. Rodent models, while vital to mechanistic investigation, have had limited success identifying effective therapies for melanoma brain metastases. The companion dog with de novo melanoma is a promising complementary model for developmental therapeutic investigation, as these tumors occur in an immunologically outbred host that has shared environmental exposures with humans. However, relatively little is known regarding the prevalence and clinicopathological features of canine melanoma metastasis to the CNS. To further validate the dog as an appropriate model for human metastatic melanoma, the aims of this study were to determine the rate of CNS metastasis and associated clinicopathologic features in canine malignant melanoma. Methods Medical records of dogs diagnosed with malignant melanoma from 1985-2019 at the University of California Davis Veterinary Medical Teaching Hospital were assessed retrospectively. Clinicopathologic features were compared between dogs with CNS metastasis (CNS+) and dogs without CNS metastasis (CNS-). Site of CNS involvement and associated neurological signs were analyzed via Wilcoxon-Mann-Whitney rank sum and Fisher’s exact tests. Survival data were analyzed via Kaplan-Meier estimates. Results CNS metastasis was identified in 38% of dogs in this study (20/53). The oral cavity was the most common site of primary melanoma in both groups [CNS+: n=12 (60%) vs. CNS-: n=22 (67%); p>0.99]. The total burden of metastatic disease was higher in the CNS+ group (CNS+: 4, 95% CI 3-5 vs. CNS-: 3, 95% CI 1-3; p<0.001). The cerebrum was the most common site of CNS metastasis (n=15, 75%) and seizures were the most observed neurological sign (n=9, 64%). There was no difference in overall survival between CNS+ and CNS- groups. However, the median survival time following onset of neurological signs was 9.5 days (95% CI 1-43), with 5 dogs euthanized within 24 hours of the onset of neurological signs. Conclusions Canine and human MM patients share similar rates of CNS metastasis and clinical presentation. This study will guide clinical management of canines with malignant melanoma and inform future studies using dogs with spontaneously occurring melanoma as a preclinical model for human melanoma brain metastases.
Collapse
Affiliation(s)
- Aryana M. Razmara
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- UCD Comprehensive Cancer Center, Sacramento, CA, United States
| | - Luke A. Wittenburg
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- UCD Comprehensive Cancer Center, Sacramento, CA, United States
| | - Sami Al-Nadaf
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- UCD Comprehensive Cancer Center, Sacramento, CA, United States
| | - Ryan G. Toedebusch
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- UCD Comprehensive Cancer Center, Sacramento, CA, United States
| | - Frederick J. Meyers
- UCD Comprehensive Cancer Center, Sacramento, CA, United States
- Department of Internal Medicine, Division of Hematology and Oncology, Center for Precision Medicine, University of California, Davis School of Medicine, Sacramento, CA, United States
| | - Christine M. Toedebusch
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- UCD Comprehensive Cancer Center, Sacramento, CA, United States
- *Correspondence: Christine M. Toedebusch,
| |
Collapse
|