1
|
Huang R, Wu Y, Shen F, Chen S, Yang X, Lin Y, Fang Y, Shen J. Manganese-coordinated nanoparticles loaded with CHK1 inhibitor dually activate cGAS-STING pathway and enhance efficacy of immune checkpoint therapy. Biomaterials 2025; 319:123199. [PMID: 40009899 DOI: 10.1016/j.biomaterials.2025.123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/26/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Notable advancements have been made in utilizing immune checkpoint blockade (ICB) for the treatment of various cancers. However, the overall response rates and therapeutic effectiveness remain unsatisfactory. One cause is the inadequate immune environment characterized by poor T cell infiltration in tumors. To address these limitations, enhancing immune infiltration is crucial for optimizing the therapeutic efficacy of ICB. Activating the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is essential for initiating immune response and has become a potential target for developing combination therapies with ICB. In this study, we designed and fabricated manganese-containing nanoparticles loaded with the CHK1 inhibitor PF477736, which were subsequently encapsulated with macrophage membrane (PF/MMSN@MPM). This innovative design achieved excellent tumor targeting and demonstrated potent antitumor effects. The combination therapy dually amplified the cGAS-STING pathway, causing a cascade of enhanced therapeutic effects against tumors. Furthermore, single-cell mass cytometry (CyTOF) analysis revealed that PF/MMSN@MPM enhanced the activation and infiltration of immune cells. Moreover, the combination of PF/MMSN@MPM with anti-PD-1 (αPD-1) exhibited a stronger therapeutic effect compared to αPD-1 alone. PF/MMSN@MPM precisely and synergistically activated the cGAS-STING pathway, significantly improving therapeutic efficacy of ICB, and offering promising potential for tumor therapy.
Collapse
Affiliation(s)
- Rui Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China; Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yijia Wu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China; Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feiyang Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China; Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuai Chen
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyu Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China; Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yao Lin
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Fang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China; Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China; Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Yu H, Wang C, Ke S, Xu Y, Lu S, Feng Z, Bai M, Qian B, Xu Y, Li Z, Yin B, Li X, Hua Y, Zhou M, Li Z, Fu Y, Ma Y. An integrative pan-cancer analysis of MASP1 and the potential clinical implications for the tumor immune microenvironment. Int J Biol Macromol 2024; 280:135834. [PMID: 39307490 DOI: 10.1016/j.ijbiomac.2024.135834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Mannose-binding lectin-associated serine protease 1 (MASP1) plays a crucial role in the complement lectin pathway and the mediation of immune responses. However, comprehensive research on MASP1 across various cancer types has not been performed to date. This study aimed to evaluate the significance of MASP1 in pan-cancer. The Cancer Genome Atlas (TCGA), UCSC Xena and Genotype Tissue Expression (GTEx) databases were used to evaluate the expression profiles, genomic features, prognostic relevance, and immune microenvironment associations of MASP1 across 33 cancer types. We observed significant dysregulation of MASP1 expression in multiple cancers, with strong associations between MASP1 expression levels and diagnostic value as well as patient prognosis. Mechanistic insights revealed significant correlations between MASP1 levels and various immunological and genomic factors, including tumor-infiltrating immune cells (TIICs), immune-related genes, mismatch repair (MMR), tumor mutation burden (TMB), and microsatellite instability (MSI), highlighting a critical regulatory function of MASP1 within the tumor immune microenvironment (TIME). In vitro and in vivo experiments demonstrated that MASP1 expression was markedly decreased in liver hepatocellular carcinoma (LIHC). Moreover, the overexpression of MASP1 in hepatocellular carcinoma (HCC) cell lines significantly inhibited their proliferation, invasion and migration. In conclusion, MASP1 exhibits differential expression in the pan-cancer analyses and might play an important role in TIME. MASP1 is a promising prognostic biomarker and a potential target for immunological research, particularly in LIHC.
Collapse
Affiliation(s)
- Hongjun Yu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Wang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Shanjia Ke
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Xu
- Department of Hepatopancreatobiliary Surgery, Affiliated Hangzhou First People's Hospital, Xihu University, Hangzhou, China
| | - Shounan Lu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhigang Feng
- The First Department of General Surgery, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Miaoyu Bai
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baolin Qian
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Xu
- Department of Pediatrics, Hainan Hospital of PLA General Hospital, Hainan, China
| | - Zihao Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongliang Hua
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Menghua Zhou
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongyu Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yong Ma
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Jia Y, Chen X, Guo H, Zhang B, Liu B. Comprehensive characterization of β-alanine metabolism-related genes in HCC identified a novel prognostic signature related to clinical outcomes. Aging (Albany NY) 2024; 16:7073-7100. [PMID: 38637116 PMCID: PMC11087131 DOI: 10.18632/aging.205744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/02/2024] [Indexed: 04/20/2024]
Abstract
Hepatocellular carcinoma (HCC) stands out as the most prevalent type of liver cancer and a significant contributor to cancer-related fatalities globally. Metabolic reprogramming, particularly in glucose, lipid, and amino acid metabolism, plays a crucial role in HCC progression. However, the functions of β-alanine metabolism-related genes (βAMRGs) in HCC remain understudied. Therefore, a comprehensive evaluation of βAMRGs is required, specifically in HCC. Initially, we explored the pan-cancer landscape of βAMRGs, integrating expression profiles, prognostic values, mutations, and methylation levels. Subsequently, scRNA sequencing results indicated that hepatocytes had the highest scores of β-alanine metabolism. In the process of hepatocyte carcinogenesis, metabolic pathways were further activated. Using βAMRGs scores and expression profiles, we classified HCC patients into three subtypes and examined their prognosis and immune microenvironments. Cluster 3, characterized by the highest βAMRGs scores, displayed the best prognosis, reinforcing β-alanine's significant contribution to HCC pathophysiology. Notably, immune microenvironment, metabolism, and cell death modes significantly varied among the β-alanine subtypes. We developed and validated a novel prognostic panel based on βAMRGs and constructed a nomogram incorporating risk degree and clinicopathological characteristics. Among the model genes, EHHADH has been identified as a protective protein in HCC. Its expression was notably downregulated in tumors and exhibited a close correlation with factors such as tumor staging, grading, and prognosis. Immunohistochemical experiments, conducted using HCC tissue microarrays, substantiated the validation of its expression levels. In conclusion, this study uncovers β-alanine's significant role in HCC for the first time, suggesting new research targets and directions for diagnosis and treatment.
Collapse
Affiliation(s)
- Yi Jia
- Department of General Surgery, Xinhua Hospital of Dalian University, Dalian, Liaoning, China
| | - Xu Chen
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hui Guo
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Biao Zhang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bin Liu
- Department of General Surgery, Xinhua Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
4
|
Pilz JF, Klein M, Neumann-Haefelin E, Ganner A. VHL-dependence of EHHADH Expression in a Human Renal Cell Carcinoma Cell Line. J Kidney Cancer VHL 2024; 11:12-18. [PMID: 38304003 PMCID: PMC10834178 DOI: 10.15586/jkcvhl.v11i1.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
The von Hippel-Lindau tumor suppressor gene (VHL) is mutated in up to 90% of clear cell renal cell carcinoma (ccRCC) cases, thus playing a key role in ccRCC pathogenesis. ccRCC can be classified as a metabolic disease in which alterations in fatty acid metabolism facilitate cancer cell proliferation. Enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (EHHADH) is an enzyme involved in peroxisomal fatty acid degradation. It is primarily expressed in renal proximal tubule cells, presumably the origin of ccRCC. Although EHHADH is still a relatively unexplored gene, it is known to be differentially expressed in several tumors. In this study, analysis of several databases revealed that EHHADH expression is downregulated in ccRCC samples compared to healthy kidney samples. Moreover, cell culture experiments were performed to investigate the relationship between EHHADH and VHL at the gene and protein level. qPCR and Western blot analyses using the human ccRCC cell line RCC4 revealed that EHHADH is expressed in a VHL-dependent manner. RCC4 cells reconstituted with VHL show significantly higher EHHADH mRNA and protein levels than VHL-deficient RCC4 control cells. These results indicate that the downregulation of EHHADH in ccRCC reported may be due to the loss of VHL function. This study is the first to molecularly characterize EHHADH, a key enzyme in peroxisomal ß-oxidation, in relation to VHL, suggesting a potential pathogenic interaction that is worthy of further investigation.
Collapse
Affiliation(s)
- Julia Felicitas Pilz
- Renal Division, Department of Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marinella Klein
- Renal Division, Department of Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elke Neumann-Haefelin
- Renal Division, Department of Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Athina Ganner
- Renal Division, Department of Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Zhao YQ, Zhang HH, Wu J, Li L, Li J, Zhong H, Jin Y, Lei TY, Zhao XY, Xu B, Song QB, He J. Prediction of Tumor Microenvironment Characteristics and Treatment Response in Lung Squamous Cell Carcinoma by Pseudogene OR7E47P-related Immune Genes. Curr Med Sci 2023; 43:1133-1150. [PMID: 38015361 DOI: 10.1007/s11596-023-2798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/22/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE Pseudogenes are initially regarded as nonfunctional genomic sequences, but some pseudogenes regulate tumor initiation and progression by interacting with other genes to modulate their transcriptional activities. Olfactory receptor family 7 subfamily E member 47 pseudogene (OR7E47P) is expressed broadly in lung tissues and has been identified as a positive regulator in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD). This study aimed to elucidate the correlation between OR7E47P and tumor immunity in lung squamous cell carcinoma (LUSC). METHODS Clinical and molecular information from The Cancer Genome Atlas (TCGA) LUSC cohort was used to identify OR7E47P-related immune genes (ORIGs) by weighted gene correlation network analysis (WGCNA). Based on the ORIGs, 2 OR7E47P clusters were identified using non-negative matrix factorization (NMF) clustering, and the stability of the clustering was tested by an extreme gradient boosting classifier (XGBoost). LASSO-Cox and stepwise regressions were applied to further select prognostic ORIGs and to construct a predictive model (ORPScore) for immunotherapy. The Botling cohorts and 8 immunotherapy cohorts (the Samstein, Braun, Jung, Gide, IMvigor210, Lauss, Van Allen, and Cho cohorts) were included as independent validation cohorts. RESULTS OR7E47P expression was positively correlated with immune cell infiltration and enrichment of immune-related pathways in LUSC. A total of 57 ORIGs were identified to classify the patients into 2 OR7E47P clusters (Cluster 1 and Cluster 2) with distinct immune, mutation, and stromal programs. Compared to Cluster 1, Cluster 2 had more infiltration by immune and stromal cells, lower mutation rates of driver genes, and higher expression of immune-related proteins. The clustering performed well in the internal and 5 external validation cohorts. Based on the 7 ORIGs (HOPX, STX2, WFS, DUSP22, SLFN13, GGCT, and CCSER2), the ORPScore was constructed to predict the prognosis and the treatment response. In addition, the ORPScore was a better prognostic factor and correlated positively with the immunotherapeutic response in cancer patients. The area under the curve values ranged from 0.584 to 0.805 in the 6 independent immunotherapy cohorts. CONCLUSION Our study suggests a significant correlation between OR7E47P and TME modulation in LUSC. ORIGs can be applied to molecularly stratify patients, and the ORPScore may serve as a biomarker for clinical decision-making regarding individualized prognostication and immunotherapy.
Collapse
Affiliation(s)
- Ya-Qi Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Medical Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Hao-Han Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hao Zhong
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Jin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tian-Yu Lei
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin-Yi Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qi-Bin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jie He
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China.
| |
Collapse
|
6
|
Szrok-Jurga S, Czumaj A, Turyn J, Hebanowska A, Swierczynski J, Sledzinski T, Stelmanska E. The Physiological and Pathological Role of Acyl-CoA Oxidation. Int J Mol Sci 2023; 24:14857. [PMID: 37834305 PMCID: PMC10573383 DOI: 10.3390/ijms241914857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Fatty acid metabolism, including β-oxidation (βOX), plays an important role in human physiology and pathology. βOX is an essential process in the energy metabolism of most human cells. Moreover, βOX is also the source of acetyl-CoA, the substrate for (a) ketone bodies synthesis, (b) cholesterol synthesis, (c) phase II detoxication, (d) protein acetylation, and (d) the synthesis of many other compounds, including N-acetylglutamate-an important regulator of urea synthesis. This review describes the current knowledge on the importance of the mitochondrial and peroxisomal βOX in various organs, including the liver, heart, kidney, lung, gastrointestinal tract, peripheral white blood cells, and other cells. In addition, the diseases associated with a disturbance of fatty acid oxidation (FAO) in the liver, heart, kidney, lung, alimentary tract, and other organs or cells are presented. Special attention was paid to abnormalities of FAO in cancer cells and the diseases caused by mutations in gene-encoding enzymes involved in FAO. Finally, issues related to α- and ω- fatty acid oxidation are discussed.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Julian Swierczynski
- Institue of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| |
Collapse
|
7
|
Gao X, Xu M, Wang H, Xia Z, Sun H, Liu M, Zhao S, Yang F, Niu Z, Gao H, Zhu H, Lu J, Zhou X. Development and validation of a mitochondrial energy metabolism-related risk model in hepatocellular carcinoma. Gene 2023; 855:147133. [PMID: 36565797 DOI: 10.1016/j.gene.2022.147133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most prevalent cancers and ranks third inmortality. Mitochondria are the energy manufacturers of cells. Disruption of mitochondrial energy metabolism pathways is strongly correlated with the onset and progression of HCC. Aberrant genes in mitochondrial energy metabolism pathways may represent a unique diagnostic and therapeutic targets that act as indicators for HCC. METHODS Gene expression data from 374 HCC patients and 50 controls were acquired from TCGA database. A total of 188 mitochondrial energy metabolism-related genes (MMRGs) were obtained from KEGG PATHWAY database. A total of 368 patients with survival data were randomly split into training and validation groups in a 7: 3 ratio. Prognosis-related MMRGs were selected by univariate Cox and LASSO analyses. Kaplan-Meier and ROC curves were employed to analyze the model precision, whereas the validation set was used for model verification. Furthermore, clinical examinations, immune infiltration analysis, GSVA, and immunotherapy analysis were conducted in the high- and low-risk groups. Finally, the risk model was combined with the clinical variables of HCC patients to perform univariate and multivariate Cox regression analyses to obtain independent risk indicators and draw a nomogram. Therefore, we evaluated the accuracy of the predictions using calibration curves. RESULTS A total of 6032 differentially expressed genes (DEGs) were detected in the HCC and control samples. After overlapping DEGs with 188 MMRGs, 42 mitochondrial energy metabolism-related DEGs (DEMMRGs) were identified. A 17 specific genes-based risk score model of HCC was created, which revealed effectiveness in each TCGA training and validation dataset. Moreover, patients categorized by risk scores exhibited distinct immune infiltration status, immunotherapy responsiveness, and functional properties. Finally, univariate and multivariate Cox regression analyses revealed that risk score and stage T were independent predictive variables. Based on the T stage and risk score, a nomogram for estimating the survival of HCC patients was created. The calibration curves demonstrated that the prediction model had a high level of accuracy. CONCLUSIONS Our study constructed a mitochondrial energy metabolism-related risk model, that may be utilized to anticipate HCC prognosis and represent the immunological microenvironment of HCC.
Collapse
Affiliation(s)
- Xin Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, 250021 Jinan, China
| | - Mingyue Xu
- Department of Endocrinology, Qilu Hospital of Shandong University, 250012 Jinan, China
| | - Heng Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, 250021 Jinan, China
| | - Zhaozhi Xia
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, China
| | - Hongrui Sun
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, China
| | - Meng Liu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, China
| | - Shuchao Zhao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, China
| | - Faji Yang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, China
| | - Zheyu Niu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, China
| | - Hengjun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, 250021 Jinan, China; Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, China
| | - Huaqiang Zhu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, 250021 Jinan, China; Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, 250021 Jinan, China; Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, China
| | - Xu Zhou
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, 250021 Jinan, China; Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, China.
| |
Collapse
|