1
|
Yuan X, Yang X. CAPRIN1 Transcriptionally Activated PLPP4 to Inhibit DOX Sensitivity and Promote Breast Cancer Progression. Cell Biochem Biophys 2024:10.1007/s12013-024-01614-0. [PMID: 39556159 DOI: 10.1007/s12013-024-01614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Phospholipid phosphatase 4 (PLPP4) has been identified as a potential regulator of cancer cell dynamics, however, the role of PLPP4 in breast cancer (BC) progression and the sensitivity of BC cells to doxorubicin (DOX) remain elusive. METHODS The study analyzed the expression of PLPP4 and cell cycle-associated protein 1 (CAPRIN1) expression in BC tissues and cells using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and western blotting assays. Functional assays including colony formation, EdU, Transwell, and flow cytometry were employed to assess cellular behaviors. The sensitivity of BC cells to DOX was analyzed by CCK-8 assay and an in vivo xenograft model assay. The association between PLPP4 and CAPRIN1 was investigated using RNA immunoprecipitation assay and dual-luciferase reporter assay. RESULTS Upregulation of PLPP4 expression was observed in BC tissues and cells. Downregulation of PLPP4 expression in BC cells resulted in a suppression of their proliferative capacity, as well as a reduction in migratory and invasive capabilities. Additionally, this manipulation enhanced cell susceptibility to apoptosis and improved the sensitivity of these cells to DOX. When PLPP4 was knocked down in vivo in transplantable tumors, there was a marked enhancement in the responsiveness to DOX treatment. The transcription factor CAPRIN1 was found to regulate the expression of PLPP4 in the HCC1937 and MDA-MB-231 cell lines. Upregulation of CAPRIN1 was observed in both BC tissues and cells, and overexpression of PLPP4 reversed the effects of CAPRIN1 silencing on BC cell proliferation, migration, invasion, apoptosis, and DOX sensitivity. CONCLUSION This study demonstrates that CAPRIN1 transcriptionally activates PLPP4 to inhibit DOX sensitivity and promote BC progression. Targeting PLPP4 may represent a novel therapeutic strategy to enhance the efficacy of DOX in BC patients.
Collapse
Affiliation(s)
- Xiaorong Yuan
- Department of Lymphatic Breast Oncology, Baotou Cancer Hospital, Baotou, 014030, China
| | - Xuejie Yang
- Department of Lymphatic Breast Oncology, Baotou Cancer Hospital, Baotou, 014030, China.
| |
Collapse
|
2
|
Faílde D, Ocampo-Zalvide V, Serantes D, Iglesias Ò. Understanding magnetic hyperthermia performance within the "Brezovich criterion": beyond the uniaxial anisotropy description. NANOSCALE 2024; 16:14319-14329. [PMID: 39012312 DOI: 10.1039/d4nr02045f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Careful determination of the heating performance of magnetic nanoparticles under AC fields is critical for magnetic hyperthermia applications. However, most interpretations of experimental data are based on the uniaxial anisotropy approximation, which in the first instance can be correlated with the particle aspect ratio. This is to say, the intrinsic magnetocrystalline anisotropy is discarded, under the assumption that the shape contribution dominates. We show in this work that such a premise, generally valid for large field amplitudes, does not hold for describing hyperthermia experiments carried out under small field values. Specifically, given its relevance for in vivo applications, we focus our analysis on the so-called "Brezovich criterion", H·f = 4.85 × 108 A m-1 s-1. By means of a computational model, we show that the intrinsic magnetocrystalline anisotropy plays a critical role in defining the heat output, determining also the role of the shape and aspect ratio of the particles on the SLP. Our results indicate that even small deviations from spherical shape have an important impact on optimizing the heating performance. The influence of interparticle interactions on the dissipated heat is also evaluated. Our results call, therefore, for an improvement in the theoretical models used to interpret magnetic hyperthermia performance.
Collapse
Affiliation(s)
- Daniel Faílde
- Applied Physics Department, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Galicia Supercomputing Center (CESGA), Santiago de Compostela, Spain
| | - Victor Ocampo-Zalvide
- Applied Physics Department, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - David Serantes
- Applied Physics Department, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Materiais (iMATUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Òscar Iglesias
- Departament de Física de la Matèria Condensada and Institut de Nanociència i Nanotecnologia Universitat de Barcelona (IN2UB), Martí i Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
3
|
Zhao J, Ge X, Li T, Yang M, Zhao R, Yan S, Wu H, Liu Y, Wang K, Xu Z, Jia J, Liu L, Dou T. Integrating metabolomics and transcriptomics to analyze the differences of breast muscle quality and flavor formation between Daweishan mini chicken and broiler. Poult Sci 2024; 103:103920. [PMID: 38909504 PMCID: PMC11253666 DOI: 10.1016/j.psj.2024.103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
The quality and flavor of chicken are affected by muscle metabolites and related regulatory genes, and the molecular regulation mechanism of meat quality is different among different breeds of chicken. In this study, 40 one-day-old Daweishan mini chicken (DM) and Cobb broiler (CB) were selected from each group, with 4 replicates and 10 chickens in each replicate. The chickens were reared until 90 d of age under the same management conditions. Then, metabolomics and transcriptomics data of 90-day-old DM (n = 4) and CB (n = 4) were integrated to analyze metabolites affecting breast muscle quality and flavor, and to explore the important genes regulating meat quality and flavor related metabolites. The results showed that a total of 38 significantly different metabolites (SDMs) and 420 differentially expressed genes (DEGs) were detected in the breast muscle of the 2 breeds. Amino acid and lipid metabolism may be the cause of meat quality and flavor difference between DM and CB chickens, involving metabolites such as L-methionine, betaine, N6, N6, N6-Trimethyl-L-lysine, L-anserine, glutathione, glutathione disulfide, L-threonine, N-Acetyl-L-aspartic acid, succinate, choline, DOPC, SOPC, alpha-linolenic acid, L-palmitoylcarnitine, etc. Important regulatory genes with high correlation with flavor amino acids (GATM, GSTO1) and lipids (PPARG, LPL, PLIN1, SCD, ANGPTL4, FABP7, GK, B4GALT6, UGT8, PLPP4) were identified by correlation analysis, and the gene-metabolite interaction network of breast muscle mass and flavor formation in DM chicken was constructed. This study showed that there were significant differences in breast metabolites between DM and CB chickens, mainly in amino acid and lipid metabolites. These 2 kinds of substances may be the main reasons for the difference in breast muscle quality and flavor between the 2 breeds. In general, this study could provide a theoretical basis for further research on the molecular regulatory mechanism of the formation of breast muscle quality and flavor differences between DM and CB chickens, and provide a reference for the development, utilization and genetic breeding of high-quality meat chicken breeds.
Collapse
Affiliation(s)
- Jingying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xuehai Ge
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tao Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Min Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ruohan Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Shixiong Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hao Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yong Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Yunnan Rural Revitalization Education Institute, Yunnan Open University, Kunming 650101, China
| | - Kun Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhiqiang Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Junjing Jia
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lixian Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Institute of Science and Technology, Chuxiong Normal University, Chuxiong 675099, China
| | - Tengfei Dou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
4
|
Wang X, Bai Y, Zhang F, Li D, Chen K, Wu R, Tang Y, Wei X, Han P. Prognostic value of COL10A1 and its correlation with tumor-infiltrating immune cells in urothelial bladder cancer: A comprehensive study based on bioinformatics and clinical analysis validation. Front Immunol 2023; 14:955949. [PMID: 37006317 PMCID: PMC10063846 DOI: 10.3389/fimmu.2023.955949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/22/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionBladder cancer (BLCA) is one of the most lethal diseases. COL10A1 is secreted small-chain collagen in the extracellular matrix associated with various tumors, including gastric, colon, breast, and lung cancer. However, the role of COL10A1 in BLCA remains unclear. This is the first research focusing on the prognostic value of COL10A1 in BLCA. In this research, we aimed to uncover the association between COL10A1 and the prognosis, as well as other clinicopathological parameters in BLCA.MethodsWe obtained gene expression profiles of BLCA and normal tissues from the TCGA, GEO, and ArrayExpress databases. Immunohistochemistry staining was performed to investigate the protein expression and prognostic value of COL10A1 in BLCA patients. GO and KEGG enrichment along with GSEA analyses were performed to reveal the biological functions and potential regulatory mechanisms of COL10A1 based on the gene co-expression network. We used the “maftools” R package to display the mutation profiles between the high and low COL10A1 groups. GIPIA2, TIMER, and CIBERSORT algorithms were utilized to explore the effect of COL10A1 on the tumor immune microenvironment.ResultsWe found that COL10A1 was upregulated in the BLCA samples, and increased COL10A1 expression was related to poor overall survival. Functional annotation of 200 co-expressed genes positively correlated with COL10A1 expression, including GO, KEGG, and GSEA enrichment analyses, indicated that COL10A1 was basically involved in the extracellular matrix, protein modification, molecular binding, ECM-receptor interaction, protein digestion and absorption, focal adhesion, and PI3K-Akt signaling pathway. The most commonly mutated genes of BLCA were different between high and low COL10A1 groups. Tumor immune infiltrating analyses showed that COL10A1 might have an essential role in recruiting infiltrating immune cells and regulating immunity in BLCA, thus affecting prognosis. Finally, external datasets and biospecimens were used, and the results further validated the aberrant expression of COL10A1 in BLCA samples.ConclusionsIn conclusion, our study demonstrates that COL10A1 is an underlying prognostic and predictive biomarker in BLCA.
Collapse
|
5
|
Wang Z, Qi H, Zhang Y, Sun H, Dong J, Wang H. PLPP2: Potential therapeutic target of breast cancer in PLPP family. Immunobiology 2022; 227:152298. [DOI: 10.1016/j.imbio.2022.152298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
|
6
|
Qi H, Wang P, Sun H, Li X, Hao X, Tian W, Yu L, Tang J, Dong J, Wang H. ADAMDEC1 accelerates GBM progression via activation of the MMP2-related pathway. Front Oncol 2022; 12:945025. [PMID: 36172139 PMCID: PMC9511150 DOI: 10.3389/fonc.2022.945025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
The ADAM (a disintegrin and metalloprotease) gene-related family including ADAM, ADAMTS, and ADAM-like decysin-1 has been reported to play an important role in the pathogenesis of multiple diseases, including cancers (lung cancer, gliomas, colorectal cancer, and gastrointestinal cancer). However, its biological role in gliomas remains largely unknown. Here, we aimed to investigate the biological functions and potential mechanism of ADAMDEC1 in gliomas. The mRNA and protein expression levels of ADAMDEC1 were upregulated in glioma tissues and cell lines. ADAMDEC1 showed a phenomenon of “abundance and disappear” expression in gliomas and normal tissues in that the higher the expression of ADAMDEC1 presented, the higher the malignancy of gliomas and the worse the prognosis. High expression of ADAMDEC1 was associated with immune response. Knockdown of ADAMDEC1 could decrease the proliferation and colony-forming ability of LN229 cells, whereas ADAMDEC1 overexpression has opposite effects in LN229 cells in vitro. Furthermore, we identified that ADAMDEC1 accelerates GBM progression via the activation of the MMP2 pathway. In the present study, we found that the expression levels of ADAMDEC1 were significantly elevated compared with other ADAMs by analyzing the expression levels of ADAM family proteins in gliomas. This suggests that ADAMDEC1 has potential as a glioma clinical marker and immunotherapy target.
Collapse
Affiliation(s)
- Huimin Qi
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Ping Wang
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Hongliang Sun
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Xiaohan Li
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Xinwei Hao
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Wenxiu Tian
- School of Basic Medicine, Weifang Medical University, Weifang, China
- Center of Translational Medicine, Zibo Central Hospital, Zibo, China
| | - Liting Yu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jiajian Tang
- School of Medicine, Southeast University, Nanjing, China
| | - Junhong Dong
- School of Basic Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Junhong Dong, ; Hongmei Wang,
| | - Hongmei Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Medicine, Southeast University, Nanjing, China
- *Correspondence: Junhong Dong, ; Hongmei Wang,
| |
Collapse
|