1
|
Bhutani MS, Faraoni EY, Mork ME, McAllister F. Gastric cancer prevention and screening during pancreatic cancer screening in high-risk individuals: an opportunity not to be missed. Gastrointest Endosc 2025; 101:1073-1076. [PMID: 39653170 DOI: 10.1016/j.gie.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Affiliation(s)
- Manoop S Bhutani
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Erika Y Faraoni
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maureen E Mork
- Clinical Cancer Genetics Program, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Florencia McAllister
- Department of Genetics, Clinical Cancer Genetics Program, Department of Gastrointestinal Medical Oncology, Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
2
|
Zhang X, Li P, Gan Y, Xiang S, Gu L, Zhou J, Zhou X, Wu P, Zhang B, Deng D. Driving effect of P16 methylation on telomerase reverse transcriptase-mediated immortalization and transformation of normal human fibroblasts. Chin Med J (Engl) 2025; 138:332-342. [PMID: 38420748 PMCID: PMC11771662 DOI: 10.1097/cm9.0000000000003004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND P16 inactivation is frequently accompanied by telomerase reverse transcriptase ( TERT ) amplification in human cancer genomes. P16 inactivation by DNA methylation often occurs automatically during immortalization of normal cells by TERT . However, direct evidence remains to be obtained to support the causal effect of epigenetic changes, such as P16 methylation, on cancer development. This study aimed to provide experimental evidence that P16 methylation directly drives cancer development. METHODS A zinc finger protein-based P16 -specific DNA methyltransferase (P16-Dnmt) vector containing a "Tet-On" switch was used to induce extensive methylation of P16 CpG islands in normal human fibroblast CCD-18Co cells. Battery assays were used to evaluate cell immortalization and transformation throughout their lifespan. Cell subcloning and DNA barcoding were used to track the diversity of cell evolution. RESULTS Leaking P16-Dnmt expression (without doxycycline-induction) could specifically inactivate P16 expression by DNA methylation. P16 methylation only promoted proliferation and prolonged lifespan but did not induce immortalization of CCD-18Co cells. Notably, cell immortalization, loss of contact inhibition, and anchorage-independent growth were always prevalent in P16-Dnmt&TERT cells, indicating cell transformation. In contrast, almost all TERT cells died in the replicative crisis. Only a few TERT cells recovered from the crisis, in which spontaneous P16 inactivation by DNA methylation occurred. Furthermore, the subclone formation capacity of P16-Dnmt&TERT cells was two-fold that of TERT cells. DNA barcoding analysis showed that the diversity of the P16-Dnmt&TERT cell population was much greater than that of the TERT cell population. CONCLUSION P16 methylation drives TERT -mediated immortalization and transformation of normal human cells that may contribute to cancer development.
Collapse
Affiliation(s)
- Xuehong Zhang
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Paiyun Li
- Division of Etiology, Beijing Cancer Hospital, Beijing 100142, China
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Gan
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Shengyan Xiang
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xiaorui Zhou
- Department of Biomedical Engineering, Peking University Cancer Hospital and Institute, Beijing 100871, China
| | - Peihuang Wu
- Department of Biomedical Engineering, Peking University Cancer Hospital and Institute, Beijing 100871, China
| | - Baozhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
- Division of Etiology, Beijing Cancer Hospital, Beijing 100142, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
3
|
Iwasawa O, Ikegami M, Miyagawa T, Morita H, Saito H, Omori I, Awaji K, Omatsu J, Yamada D, Kage H, Oda K, Sato S, Sumida H. Association of genetic alterations with prognosis in extramammary Paget disease: insights into the involvement of somatic CDKN2A variants in patients with a poor prognosis. Br J Dermatol 2024; 192:46-54. [PMID: 39172540 DOI: 10.1093/bjd/ljae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/27/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Previous studies have reported the mutational landscape in extramammary Paget disease (EMPD); however, the prognostic implications of genetic alterations remain unexplored. While CDKN2A loss is known to be associated with tumour progression or poor prognosis in some types of cancer, its significance in EMPD has not been investigated. OBJECTIVES To examine the association between common genetic alterations and prognosis in EMPD. METHODS A retrospective cohort study was carried out to analyse the data of patients with EMPD registered up to January 2024 in the Center for Cancer Genomics and Advanced Therapeutics database, a nationwide database that records clinical data and comprehensive genomic profiling (CGP) test results in Japan. RESULTS A total of 167 patients with EMPD were recorded in the database, with CDKN2A loss being the most frequent genetic variant. Survival analysis was conducted on data from 127 patients. Survival from the initiation of chemotherapy was analysed, adjusting for length bias inherent in the database with the Kaplan-Meier estimator, an established method of adjustment. Patients with BRCA2-mutant tumours (n = 18) had a worse prognosis than those with BRCA2 wildtype (WT) tumours [n = 109; hazard ratio (HR) 2.97, 95% confidence interval (CI) 1.46-6.01 (P = 0.003)]. Additionally, patients in the CDKN2A mutant group (n = 72) had a significantly worse prognosis compared with those in the CDKN2A WT group [n = 55; HR 1.81, 95% CI 1.06-3.07 (P = 0.029)]. Most CDKN2A variants were pathogenic, primarily characterized by loss, while most BRCA2 variants were variants of uncertain significance. In the survival analysis of CGP enrolment based on Eastern Cooperative Oncology Group performance status (ECOG-PS), patients with an ECOG-PS of 1 at the time of CGP enrolment had a significantly poorer prognosis compared with those with an ECOG-PS of 0 (P = 0.034; median survival time 531 vs. 259 days). CONCLUSIONS A somatic CDKN2A variant, mainly exhibiting loss, may be associated with a poor prognosis in EMPD. Patients with EMPD with BRCA2-mutant disease might also have a worse prognosis. In addition, CGP testing before ECOG-PS deteriorates is preferable, considering that the observed median survival of individuals undergoing CGP tests in an ECOG-PS 1 condition was < 9 months.
Collapse
Affiliation(s)
- Okuto Iwasawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masachika Ikegami
- Department of Musculoskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Takuya Miyagawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiromichi Morita
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hinako Saito
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Omori
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Awaji
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Omatsu
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Yamada
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidenori Kage
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hayakazu Sumida
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Scleroderma Center, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
4
|
Zhang G, Xiang M, Gu L, Zhou J, Zhang B, Tian W, Deng D. The essential role of TTC28 in maintaining chromosomal stability via HSPA8 chaperone-mediated autophagy. Proc Natl Acad Sci U S A 2024; 121:e2409447121. [PMID: 39630868 DOI: 10.1073/pnas.2409447121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/18/2024] [Indexed: 12/07/2024] Open
Abstract
There are three distinct forms of autophagy, namely, macroautophagy, microautophagy, and HSPA8 chaperone-mediated autophagy (CMA). While macroautophagy is widely recognized as a regulator of chromosomal instability (CIN) through various pathways, the contributions of CMA and microautophagy to CIN remain uncertain. TTC28, a conserved gene in vertebrates, is frequently mutated and down-regulated in numerous human cancers. This study presents findings demonstrating the interaction between human tetratricopeptide repeat domain 28 (TTC28) and heat shock protein member 8 (HSPA8) and lysosomal-associated membrane protein 2A proteins. The tetratricopeptide repeat domains of TTC28 bind to the C-terminal motif (PTIEEVD) in HSPA8, resulting in the subsequent degradation of TTC28 via CMA/microautophagy. Notably, the baseline frequency of micronuclei (FMN) in human cancer cells with TTC28 knockout cells was three times greater than that in cells with wild-type TTC28 (7.7% vs. 2.3%, P = 4.86E-09). Furthermore, the overexpression of Ttc28 mitigated the impact of TTC28 knockout on FMN (11.9% vs. 4.8%, P = 2.83E-11). Our findings also demonstrate that CMA has a protective effect on genome stability and that TTC28 plays an essential role in the effect of CMA. These results were further supported by the quantification of γH2AX and comet analyses and the analysis of The Cancer Genome Atlas data via bioinformatics. Mechanistically, TTC28 regulates mitosis and cytokinesis, which are involved in the maintenance of genome integrity by CMA. In conclusion, our study demonstrated that TTC28 is not only an HSPA8-mediated CMA/microautophagy substrate but also essential for maintaining chromosomal stability via CMA. Comprehensive TTC28 downregulation may lead to CIN in cancer cells.
Collapse
Affiliation(s)
- Ge Zhang
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Meiyi Xiang
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Liankun Gu
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jing Zhou
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Baozhen Zhang
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Wei Tian
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Dajun Deng
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
5
|
Weng W, Zhang B, Deng D. P16 INK4A drives RB1 degradation by UTP14A-catalyzed K810 ubiquitination. iScience 2024; 27:110882. [PMID: 39351198 PMCID: PMC11440251 DOI: 10.1016/j.isci.2024.110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
P16INK4A expression is inversely associated with RB1 expression in cancer cells, and P16INK4A inhibits CDK4-catalyzed RB1 phosphorylation. How P16INK4A and RB1 coordinately express and regulate the cell cycle remains to be studied. In the present study, we found that P16INK4A upregulated the E3 ligase UTP14A, which led to the ubiquitination of RB1 at K810 and RB1 degradation. P16INK4A loss consistently disrupted the UTP14A-mediated degradation of RB1 and caused RB1 accumulation. Functionally, P16INK4A loss inhibited RB1 ubiquitination in a cell cycle progression-independent fashion and inhibited proteome-scale ubiquitination in a cell cycle progression-dependent manner. Our findings indicate that there is a negative feedback loop between P16INK4A and RB1 expression and that disruption of this loop may partially rescue the biological outcomes of P16INK4A loss. We also revealed a hitherto unknown function for P16 INK4A in regulating proteome-scale ubiquitination by inhibiting cell proliferation, which may be useful for the development of anticancer drugs.
Collapse
Affiliation(s)
- Wenjie Weng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing) Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Baozhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing) Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing) Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
6
|
Deng L, Zhou J, Sun Y, Hu Y, Qiao J, Liu Z, Gu L, Lin D, Zhang L, Deng D. CDKN2A somatic copy number amplification in normal tissues surrounding gastric carcinoma reduces cancer metastasis risk in droplet digital PCR analysis. Gastric Cancer 2024; 27:986-997. [PMID: 38822931 DOI: 10.1007/s10120-024-01515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The CDKN2A gene is frequently affected by somatic copy number variations (SCNVs, including deletions and amplifications [SCNdel and SCNamp]) in the cancer genome. Using surgical gastric margin tissue samples (SMs) as the diploid reference in SCNV analysis via CDKN2A/P16-specific real-time PCR (P16-Light), we previously reported that the CDKN2A SCNdel was associated with a high risk of metastasis of gastric carcinoma (GC). However, the status of CDKN2A SCNVs in SMs and their clinical significance have not been reported. METHODS Peripheral white blood cell (WBC) and frozen GC and SM tissue samples were collected from patients (n = 80). Droplet digital PCR (ddPCR) was used to determine the copy number (CN) of the CDKN2A gene in tissue samples using paired WBCs as the diploid reference. RESULTS A novel P16-ddPCR system was initially established with a minimal proportion (or limit, 10%) of the detection of CDKN2A CN alterations. While CDKN2A SCNamp events were detected in both SMs and GCs, fewer CDKN2A SCNdel events were detected in SMs than in GCs (15.0% vs. 41.3%, P = 4.77E-04). Notably, significantly more SCNamp and fewer SCNdel of the CDKN2A gene were detected in SMs from GC patients without metastasis than in those from patients with lymph node metastasis by P16-ddPCR (P = 0.023). The status of CDKN2A SCNVs in SM samples was significantly associated with overall survival (P = 0.032). No cancer deaths were observed among the 11 patients with CDKN2A SCNamp. CONCLUSION CDKN2A SCNVs in SMs identified by P16-ddPCR are prevalent and significantly associated with GC metastasis and overall survival.
Collapse
Affiliation(s)
- Lewen Deng
- Key Laboratory of Carcinogenesis and Translational Research, (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research, (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yu Sun
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Ying Hu
- Key Laboratory of Carcinogenesis and Translational Research, (MOE/Beijing), Department of Surgery, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Juanli Qiao
- Key Laboratory of Carcinogenesis and Translational Research, (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Zhaojun Liu
- Key Laboratory of Carcinogenesis and Translational Research, (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research, (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Dongmei Lin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Lianhai Zhang
- Key Laboratory of Carcinogenesis and Translational Research, (MOE/Beijing), Department of Surgery, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research, (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
7
|
Li C, Zhu L, Liu Q, Peng M, Deng J, Fan Z, Duan X, Xue R, Guo Z, Lv X, Li L, Zhao J. The role of cuproptosis-related genes in pan-cancer and the development of cuproptosis-related risk model in colon adenocarcinoma. Heliyon 2024; 10:e34011. [PMID: 39100456 PMCID: PMC11295573 DOI: 10.1016/j.heliyon.2024.e34011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Cancer is widely regarded as a leading cause of death in humans, with colon adenocarcinoma (COAD) ranking among the most prevalent types. Cuproptosis is a novel form of cell death mediated by protein lipoylation. Cuproptosis-related genes (CRGs) participate in tumourigenesis and development. Their role in pan-cancer and COAD require further investigation. This study comprehensively evaluated the relationship among CRGs, pan-cancer, and COAD. Our research revealed the differential expression of CRGs and the cuproptosis potential index (CPI) between normal and tumour tissues, and further explored the correlation of CRGs or CPI with prognosis, immune infiltration, tumor mutant burden(TMB), microsatellite instability (MSI), and drug sensitivity in pan-cancer. Gene set enrichment analysis (GSEA) revealed that oxidative phosphorylation and fatty acid metabolism pathways were significantly enriched in the high CPI group of most tumours. FDX1 and CDKN2A were chosen for further exploration, and we found an independent association between FDX1 and CDKN2A and prognosis, immune infiltration, TMB, and MSI in pan-cancer. Furthermore, a prognostic risk model based on the association between CRGs and COAD was built, and the correlations between the risk score and prognosis, immune-related characteristics, and drug sensitivity were analysed. COAD was then divided into three subtypes using cluster analysis, and the differences among the subtypes in prognosis, CPI, immune-related characteristics, and drug sensitivity were determined. Due to the level of LIPT1 was notably positive related with the risk score, the cytological identification was carried out to identify the association of LIPT1 with proliferation and migration of colon cancer cells. In summary, CRGs can be used as potential prognostic biomarkers to predict immune infiltration levels in patients with pan-cancer. In addition, the risk model could more accurately predict the prognosis and immune infiltration levels of COAD and better guide the direction of clinical medication. Thus, FDX1, CDKN2A, and LIPT1 may serve as prospective new targets for cancer therapy.
Collapse
Affiliation(s)
- Chunwei Li
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lili Zhu
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qinghua Liu
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mengle Peng
- Department of Clinical Laboratory, Henan No.3 Provincial People's Hospital, Zhengzhou, 450006, Henan, China
| | - Jinhai Deng
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC), Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Zhirui Fan
- Department of Integrated Traditional and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaoran Duan
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ruyue Xue
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhiping Guo
- Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450052, Henan, China
| | - Xuefeng Lv
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lifeng Li
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
- Medical School, Huanghe Science and Technology University, 666 Zi Jing Shan Road, Zhengzhou, 450000, Henan, China
| | - Jie Zhao
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
8
|
Li DM, Li GS, Li JD, Chen F, Huang H, Huang WY, Huang ZG, Dang YW, Tang YL, Tang ZQ, Tang WJ, Chen G, Lu HP. Clinical significance and prospective mechanism of increased CDKN2A expression in small cell lung cancer. Clin Transl Oncol 2024; 26:1519-1531. [PMID: 38206516 PMCID: PMC11108933 DOI: 10.1007/s12094-023-03376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Although it has been shown that cyclin dependent kinase inhibitor 2A (CDKN2A) plays a significant role in a number of malignancies, its clinicopathological value and function in small cell lung cancer (SCLC) is unclear and warrants additional research. METHODS The clinical significance of CDKN2A expression in SCLC was examined by multiple methods, including comprehensive integration of mRNA level by high throughput data, Kaplan-Meier survival analysis for prognostic value, and validation of its protein expression using in-house immunohistochemistry. RESULTS The expression of CDKN2A mRNA in 357 cases of SCLC was evidently higher than that in the control group (n = 525) combing the data from 20 research centers worldwide. The standardized mean difference (SMD) was 3.07, and the area under the curve (AUC) of summary receiver operating characteristic curve (sROC) was 0.97 for the overexpression of CDKN2A. ACC, COAD, KICH, KIRC, PCPG, PRAD, UCEC, UVM patients with higher CDKN2A expression had considerably worse overall survival rates than those with lower CDKN2A expression with the hazard ratio (HR) > 1. CONCLUSION CDKN2A upregulation extensively enhances the carcinogenesis and progression of SCLC.
Collapse
Affiliation(s)
- Dong-Ming Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Guo-Sheng Li
- Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Feng Chen
- Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Hong Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Wan-Ying Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Yu-Lu Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Zhong-Qing Tang
- Department of Pathology, Wuzhou Gongren Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, No.1, Nansanxiang Gaodi Road, Guangxi Zhuang Autonomous Region, Wuzhou, 543000, People's Republic of China
| | - Wen-Jia Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Hui-Ping Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China.
| |
Collapse
|
9
|
Deng C, Li ZX, Xie CJ, Zhang QL, Hu BS, Wang MD, Mei J, Yang C, Zhong Z, Wang KW. Pan-cancer analysis of CDKN2A alterations identifies a subset of gastric cancer with a cold tumor immune microenvironment. Hum Genomics 2024; 18:55. [PMID: 38822443 PMCID: PMC11143690 DOI: 10.1186/s40246-024-00615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/03/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Although CDKN2A alteration has been explored as a favorable factor for tumorigenesis in pan-cancers, the association between CDKN2A point mutation (MUT) and intragenic deletion (DEL) and response to immune checkpoint inhibitors (ICIs) is still disputed. This study aims to determine the associations of CDKN2A MUT and DEL with overall survival (OS) and response to immune checkpoint inhibitors treatment (ICIs) among pan-cancers and the clinical features of CDKN2A-altered gastric cancer. METHODS This study included 45,000 tumor patients that underwent tumor sequencing across 33 cancer types from four cohorts, the MSK-MetTropism, MSK-IMPACT, OrigiMed2020 and TCGA cohorts. Clinical outcomes and genomic factors associated with response to ICIs, including tumor mutational burden, copy number alteration, neoantigen load, microsatellite instability, tumor immune microenvironment and immune-related gene signatures, were collected in pan-cancer. Clinicopathologic features and outcomes were assessed in gastric cancer. Patients were grouped based on the presence of CDKN2A wild type (WT), CDKN2A MUT, CDKN2A DEL and CDKN2A other alteration (ALT). RESULTS Our research showed that CDKN2A-MUT patients had shorter survival times than CDKN2A-WT patients in the MSK MetTropism and TCGA cohorts, but longer OS in the MSK-IMPACT cohort with ICIs treatment, particularly in patients having metastatic disease. Similar results were observed among pan-cancer patients with CDKN2A DEL and other ALT. Notably, CDKN2A ALT frequency was positively related to tumor-specific objective response rates to ICIs in MSK MetTropism and OrigiMed 2020. Additionally, individuals with esophageal carcinoma or stomach adenocarcinoma who had CDKN2A MUT had poorer OS than patients from the MSK-IMPACT group, but not those with adenocarcinoma. We also found reduced levels of activated NK cells, T cells CD8 and M2 macrophages in tumor tissue from CDKN2A-MUT or DEL pan-cancer patients compared to CDKN2A-WT patients in TCGA cohort. Gastric cancer scRNA-seq data also showed that CDKN2A-ALT cancer contained less CD8 T cells but more exhausted T cells than CDKN2A-WT cancer. A crucial finding of the pathway analysis was the inhibition of three immune-related pathways in the CDKN2A ALT gastric cancer patients, including the interferon alpha response, inflammatory response, and interferon gamma response. CONCLUSIONS This study illustrates the CDKN2A MUT and DEL were associated with a poor outcome across cancers. CDKN2A ALT, on the other hand, have the potential to be used as a biomarker for choosing patients for ICI treatment, notably in esophageal carcinoma and stomach adenocarcinoma.
Collapse
Affiliation(s)
- Chao Deng
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, Jiangsu Province, 214122, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zi-Xi Li
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, Jiangsu Province, 214122, China
| | - Chen-Jun Xie
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, Jiangsu Province, 214122, China
| | - Qing-Lin Zhang
- Departments of Gastroenterology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Ben-Shun Hu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mei-Dan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, Jiangsu Province, 214122, China
| | - Jie Mei
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Chen Yang
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, Jiangsu Province, 214122, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macao SAR 999078, China.
| | - Ke-Wei Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, Jiangsu Province, 214122, China.
| |
Collapse
|
10
|
Fan Z, Zhou J, Tian Y, Qin Y, Liu Z, Gu L, Dawsey SM, Wei W, Deng D. Somatic CDKN2A copy number variations are associated with the prognosis of esophageal squamous cell dysplasia. Chin Med J (Engl) 2024; 137:980-989. [PMID: 38445358 PMCID: PMC11046026 DOI: 10.1097/cm9.0000000000002982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Somatic copy number variations (SCNVs) in the CDKN2A gene are among the most frequent events in the dysplasia-carcinoma sequence of esophageal squamous cell carcinoma. However, whether CDKN2A SCNVs are useful biomarkers for the risk stratification and management of patients with esophageal squamous cell dysplasia (ESCdys) is unknown. This study aimed to investigate the characteristics and prognostic value of CDKN2A SCNVs in patients with mild or moderate (m/M) ESCdys. METHODS This study conducted a prospective multicenter study of 205 patients with a baseline diagnosis of m/M ESCdys in five high-risk regions of China (Ci County, Hebei Province; Yanting, Sichuan Province; Linzhou, Henan Province; Yangzhong, Jiangsu Province; and Feicheng, Shandong Province) from 2005 to 2019. Genomic DNA was extracted from paraffin biopsy samples and paired peripheral white blood cells from patients, and a quantitative polymerase chain reaction assay, P16-Light, was used to detect CDKN2A copy number. The cumulative regression and progression rates of ESCdys were evaluated using competing risk models. RESULTS A total of 205 patients with baseline m/M ESCdys were enrolled. The proportion of ESCdys regression was significantly lower in the CDKN2A deletion cohort than in the diploid and amplification cohorts (18.8% [13/69] vs. 35.0% [28/80] vs. 51.8% [29/56], P <0.001). In the univariable competing risk analysis, the cumulative regression rate was statistically significantly lower ( P = 0.008), while the cumulative progression rate was higher ( P = 0.017) in ESCdys patients with CDKN2A deletion than in those without CDKN2A deletion. CDKN2A deletion was also an independent predictor of prognosis in ESCdys ( P = 0.004) in the multivariable analysis. CONCLUSION The results indicated that CDKN2A SCNVs are associated with the prognosis of ESCdys and may serve as potential biomarkers for risk stratification.
Collapse
Affiliation(s)
- Zhiyuan Fan
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yuan Tian
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yu Qin
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhaojun Liu
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Sanford M. Dawsey
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wenqiang Wei
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
11
|
Soltan MA, Alhanshani AA, Shati AA, Alqahtani YA, Alshaya DS, Alharthi J, Altalhi SA, Fayad E, Zaki MSA, Eid RA. Cyclin Dependent Kinase Inhibitor 2A Genetic and Epigenetic Alterations Interfere with Several Immune Components and Predict Poor Clinical Outcome. Biomedicines 2023; 11:2254. [PMID: 37626750 PMCID: PMC10452213 DOI: 10.3390/biomedicines11082254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Cyclin dependent kinase inhibitor 2A (CDKN2A) is a well-known tumor suppressor gene as it functions as a cell cycle regulator. While several reports correlate the malfunction of CDKN2A with the initiation and progression of several types of human tumors, there is a lack of a comprehensive study that analyzes the potential effect of CDKN2A genetic alterations on the human immune components and the consequences of that effect on tumor progression and patient survival in a pan-cancer model. The first stage of the current study was the analysis of CDKN2A differential expression in tumor tissues and the corresponding normal ones and correlating that with tumor stage, grade, metastasis, and clinical outcome. Next, a detailed profile of CDKN2A genetic alteration under tumor conditions was described and assessed for its effect on the status of different human immune components. CDKN2A was found to be upregulated in cancerous tissues versus normal ones and that predicted the progression of tumor stage, grade, and metastasis in addition to poor prognosis under different forms of tumors. Additionally, CDKN2A experienced different forms of genetic alteration under tumor conditions, a characteristic that influenced the infiltration and the status of CD8, the chemokine CCL4, and the chemokine receptor CCR6. Collectively, the current study demonstrates the potential employment of CDKN2A genetic alteration as a prognostic and immunological biomarker under several types of human cancers.
Collapse
Affiliation(s)
- Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia 41611, Egypt
| | - Ahmad A. Alhanshani
- Department of Child Health, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Youssef A. Alqahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Dalal Sulaiman Alshaya
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Jawaher Alharthi
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sarah Awwadh Altalhi
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
12
|
Systematic analysis of the cuprotosis in tumor microenvironment and prognosis of gastric cancer. Heliyon 2023; 9:e13831. [PMID: 36895378 PMCID: PMC9988515 DOI: 10.1016/j.heliyon.2023.e13831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Cuprotosis is a new programmed cell death related to cancer. However, the characteristics of cuprotosis in gastric cancer (GC) remain unknown. Ten cuprotosis molecules from 1544 GC patients were used to identify three GC molecular genotypes. Cluster A was characterized by the best clinical outcome and was significantly enriched in metabolic signaling pathways. Cluster B exhibited elevated immune activation, high immune stroma scores and was significantly enriched in tumor immune signaling pathways. Cluster C was characterized by severe immunosuppression and poor response to immunotherapy. Notably, the citrate cycle, cell cycle, and p53 signaling pathways were enriched in the differentially expressed genes among the three subtypes, which were critical signaling pathways for cell death. We also developed a cuprotosis signature risk score that could accurately predict the survival, immunity, and subtype of GC. This study presents a systematic analysis of cuprotosis molecules and provides new immunotherapeutic targets for GC patients.
Collapse
|
13
|
Tian Y, Zhou J, Qiao J, Liu Z, Gu L, Zhang B, Lu Y, Xing R, Deng D. Detection of somatic copy number deletion of the CDKN2A gene by quantitative multiplex PCR for clinical practice. Front Oncol 2022; 12:1038380. [PMID: 36531022 PMCID: PMC9755846 DOI: 10.3389/fonc.2022.1038380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND A feasible method to detect somatic copy number deletion (SCND) of genes is still absent to date. METHODS Interstitial base-resolution deletion/fusion coordinates for CDKN2A were extracted from published articles and our whole genome sequencing (WGS) datasets. The copy number of the CDKN2A gene was measured with a quantitative multiplex PCR assay P16-Light and confirmed with whole genome sequencing (WGS). RESULTS Estimated common deletion regions (CDRs) were observed in many tumor suppressor genes, such as ATM, CDKN2A, FAT1, miR31HG, PTEN, and RB1, in the SNP array-based COSMIC datasets. A 5.1 kb base-resolution CDR could be identified in >90% of cancer samples with CDKN2A deletion by sequencing. The CDKN2A CDR covers exon-2, which is essential for P16INK4A and P14ARF synthesis. Using the true CDKN2A CDR as a PCR target, a quantitative multiplex PCR assay P16-Light was programmed to detect CDKN2A gene copy number. P16-Light was further confirmed with WGS as the gold standard among cancer tissue samples from 139 patients. CONCLUSION The 5.1 kb CDKN2A CDR was found in >90% of cancers containing CDKN2A deletion. The CDKN2A CDR was used as a potential target for developing the P16-Light assay to detect CDKN2A SCND and amplification for routine clinical practices.
Collapse
Affiliation(s)
- Yuan Tian
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Juanli Qiao
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhaojun Liu
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Baozhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Youyong Lu
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Tumor Biology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Rui Xing
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Tumor Biology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
14
|
Bencivenga D, Stampone E, Vastante A, Barahmeh M, Della Ragione F, Borriello A. An Unanticipated Modulation of Cyclin-Dependent Kinase Inhibitors: The Role of Long Non-Coding RNAs. Cells 2022; 11:cells11081346. [PMID: 35456025 PMCID: PMC9028986 DOI: 10.3390/cells11081346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
It is now definitively established that a large part of the human genome is transcribed. However, only a scarce percentage of the transcriptome (about 1.2%) consists of RNAs that are translated into proteins, while the large majority of transcripts include a variety of RNA families with different dimensions and functions. Within this heterogeneous RNA world, a significant fraction consists of sequences with a length of more than 200 bases that form the so-called long non-coding RNA family. The functions of long non-coding RNAs range from the regulation of gene transcription to the changes in DNA topology and nucleosome modification and structural organization, to paraspeckle formation and cellular organelles maturation. This review is focused on the role of long non-coding RNAs as regulators of cyclin-dependent kinase inhibitors’ (CDKIs) levels and activities. Cyclin-dependent kinases are enzymes necessary for the tuned progression of the cell division cycle. The control of their activity takes place at various levels. Among these, interaction with CDKIs is a vital mechanism. Through CDKI modulation, long non-coding RNAs implement control over cellular physiology and are associated with numerous pathologies. However, although there are robust data in the literature, the role of long non-coding RNAs in the modulation of CDKIs appears to still be underestimated, as well as their importance in cell proliferation control.
Collapse
|