1
|
Huang T, Huang X, Yin H. Deep learning methods for improving the accuracy and efficiency of pathological image analysis. Sci Prog 2025; 108:368504241306830. [PMID: 39814425 PMCID: PMC11736776 DOI: 10.1177/00368504241306830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This study presents a novel integration of two advanced deep learning models, U-Net and EfficientNetV2, to achieve high-precision segmentation and rapid classification of pathological images. A key innovation is the development of a new heatmap generation algorithm, which leverages meticulous image preprocessing, data enhancement strategies, ensemble learning, attention mechanisms, and deep feature fusion techniques. This algorithm not only produces highly accurate and interpretatively rich heatmaps but also significantly improves the accuracy and efficiency of pathological image analysis. Unlike existing methods, our approach integrates these advanced techniques into a cohesive framework, enhancing its ability to reveal critical features in pathological images. Rigorous experimental validation demonstrated that our algorithm excels in key performance indicators such as accuracy, recall rate, and processing speed, underscoring its potential for broader applications in pathological image analysis and beyond.
Collapse
Affiliation(s)
- Tangsen Huang
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China
- School of Mathematics and Computer Science, Lishui University, Lishui, China
- School of Information Engineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xingru Huang
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Haibing Yin
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China
- School of Mathematics and Computer Science, Lishui University, Lishui, China
| |
Collapse
|
2
|
Patkar S, Chen A, Basnet A, Bixby A, Rajendran R, Chernet R, Faso S, Kumar PA, Desai D, El-Zammar O, Curtiss C, Carello SJ, Nasr MR, Choyke P, Harmon S, Turkbey B, Jamaspishvili T. Predicting the tumor microenvironment composition and immunotherapy response in non-small cell lung cancer from digital histopathology images. NPJ Precis Oncol 2024; 8:280. [PMID: 39702609 PMCID: PMC11659524 DOI: 10.1038/s41698-024-00765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have become integral to treatment of non-small cell lung cancer (NSCLC). However, reliable biomarkers predictive of immunotherapy efficacy are limited. Here, we introduce HistoTME, a novel weakly supervised deep learning approach to infer the tumor microenvironment (TME) composition directly from histopathology images of NSCLC patients. We show that HistoTME accurately predicts the expression of 30 distinct cell type-specific molecular signatures directly from whole slide images, achieving an average Pearson correlation of 0.5 with the ground truth on independent tumor cohorts. Furthermore, we find that HistoTME-predicted microenvironment signatures and their underlying interactions improve prognostication of lung cancer patients receiving immunotherapy, achieving an AUROC of 0.75 [95% CI: 0.61-0.88] for predicting treatment responses following first-line ICI treatment, utilizing an external clinical cohort of 652 patients. Collectively, HistoTME presents an effective approach for interrogating the TME and predicting ICI response, complementing PD-L1 expression, and bringing us closer to personalized immuno-oncology.
Collapse
Affiliation(s)
- Sushant Patkar
- Artificial Intelligence Resource (AIR), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Alex Chen
- Artificial Intelligence Resource (AIR), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alina Basnet
- Department of Hematology and Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Amber Bixby
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rahul Rajendran
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rachel Chernet
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Susan Faso
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Prashanth Ashok Kumar
- Department of Hematology and Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Devashish Desai
- Department of Hematology and Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ola El-Zammar
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Christopher Curtiss
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Saverio J Carello
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Michel R Nasr
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Peter Choyke
- Artificial Intelligence Resource (AIR), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie Harmon
- Artificial Intelligence Resource (AIR), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Baris Turkbey
- Artificial Intelligence Resource (AIR), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tamara Jamaspishvili
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
3
|
Makhlouf Y, Singh VK, Craig S, McArdle A, French D, Loughrey MB, Oliver N, Acevedo JB, O’Reilly P, James JA, Maxwell P, Salto-Tellez M. True-T - Improving T-cell response quantification with holistic artificial intelligence based prediction in immunohistochemistry images. Comput Struct Biotechnol J 2024; 23:174-185. [PMID: 38146436 PMCID: PMC10749253 DOI: 10.1016/j.csbj.2023.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/27/2023] Open
Abstract
The immune response associated with oncogenesis and potential oncological ther- apeutic interventions has dominated the field of cancer research over the last decade. T-cell lymphocytes in the tumor microenvironment are a crucial aspect of cancer's adaptive immunity, and the quantification of T-cells in specific can- cer types has been suggested as a potential diagnostic aid. However, this is cur- rently not part of routine diagnostics. To address this challenge, we present a new method called True-T, which employs artificial intelligence-based techniques to quantify T-cells in colorectal cancer (CRC) using immunohistochemistry (IHC) images. True-T analyses the chromogenic tissue hybridization signal of three widely recognized T-cell markers (CD3, CD4, and CD8). Our method employs a pipeline consisting of three stages: T-cell segmentation, density estimation from the segmented mask, and prediction of individual five-year survival rates. In the first stage, we utilize the U-Net method, where a pre-trained ResNet-34 is em- ployed as an encoder to extract clinically relevant T-cell features. The segmenta- tion model is trained and evaluated individually, demonstrating its generalization in detecting the CD3, CD4, and CD8 biomarkers in IHC images. In the second stage, the density of T-cells is estimated using the predicted mask, which serves as a crucial indicator for patient survival statistics in the third stage. This ap- proach was developed and tested in 1041 patients from four reference diagnostic institutions, ensuring broad applicability. The clinical effectiveness of True-T is demonstrated in stages II-IV CRC by offering valuable prognostic information that surpasses previous quantitative gold standards, opening possibilities for po- tential clinical applications. Finally, to evaluate the robustness and broader ap- plicability of our approach without additional training, we assessed the universal accuracy of the CD3 component of the True-T algorithm across 13 distinct solid tumors.
Collapse
Affiliation(s)
- Yasmine Makhlouf
- Precision Medicine Centre of Excellence, Health Sciences Building, The Patrick G Johnston, Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Vivek Kumar Singh
- Precision Medicine Centre of Excellence, Health Sciences Building, The Patrick G Johnston, Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Stephanie Craig
- Precision Medicine Centre of Excellence, Health Sciences Building, The Patrick G Johnston, Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Aoife McArdle
- Precision Medicine Centre of Excellence, Health Sciences Building, The Patrick G Johnston, Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Dominique French
- Precision Medicine Centre of Excellence, Health Sciences Building, The Patrick G Johnston, Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Maurice B. Loughrey
- Precision Medicine Centre of Excellence, Health Sciences Building, The Patrick G Johnston, Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
- Cellular Pathology, Belfast Health and Social Care Trust, Belfast City Hospital, Lisburn Road, Belfast BT9 7AB, UK
| | - Nicola Oliver
- Precision Medicine Centre of Excellence, Health Sciences Building, The Patrick G Johnston, Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Juvenal Baena Acevedo
- Precision Medicine Centre of Excellence, Health Sciences Building, The Patrick G Johnston, Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| | | | - Jacqueline A. James
- Precision Medicine Centre of Excellence, Health Sciences Building, The Patrick G Johnston, Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
- Regional Molecular Diagnostic Service, Belfast Health and Social Care Trust, Belfast BT9 7AE, UK
| | - Perry Maxwell
- Precision Medicine Centre of Excellence, Health Sciences Building, The Patrick G Johnston, Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Manuel Salto-Tellez
- Precision Medicine Centre of Excellence, Health Sciences Building, The Patrick G Johnston, Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
- Sonrai Analytics, Belfast BT9 7AE, UK
- Regional Molecular Diagnostic Service, Belfast Health and Social Care Trust, Belfast BT9 7AE, UK
- Integrated Pathology Unit, Institute of Cancer Research and Royal Marsden Hospital, London SW7 3RP, UK
| |
Collapse
|
4
|
Vidal JM, Tsiknakis N, Staaf J, Bosch A, Ehinger A, Nimeus E, Salgado R, Bai Y, Rimm DL, Hartman J, Acs B. The analytical and clinical validity of AI algorithms to score TILs in TNBC: can we use different machine learning models interchangeably? EClinicalMedicine 2024; 78:102928. [PMID: 39634035 PMCID: PMC11615110 DOI: 10.1016/j.eclinm.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
Background Pathologist-read tumor-infiltrating lymphocytes (TILs) have showcased their predictive and prognostic potential for early and metastatic triple-negative breast cancer (TNBC) but it is still subject to variability. Artificial intelligence (AI) is a promising approach toward eliminating variability and objectively automating TILs assessment. However, demonstrating robust analytical and prognostic validity is the key challenge currently preventing their integration into clinical workflows. Methods We evaluated the impact of ten AI models on TILs scoring, emphasizing their distinctions in TILs analytical and prognostic validity. Several AI-based TILs scoring models (seven developed and three previously validated AI models) were tested in a retrospective analytical cohort and in an independent prospective cohort to compare prognostic validation against invasive disease-free survival endpoint with 4 years median follow-up. The development and analytical validity set consisted of diagnostic tissue slides of 79 women with surgically resected primary invasive TNBC tumors diagnosed between 2012 and 2016 from the Yale School of Medicine. An independent set comprising of 215 TNBC patients from Sweden diagnosed between 2010 and 2015, was used for testing prognostic validity. Findings A significant difference in analytical validity (Spearman's r = 0.63-0.73, p < 0.001) is highlighted across AI methodologies and training strategies. Interestingly, the prognostic performance of digital TILs is demonstrated for eight out of ten AI models, even less extensively trained ones, with similar and overlapping hazard ratios (HR) in the external validation cohort (Cox regression analysis based on IDFS-endpoint, HR = 0.40-0.47; p < 0.004). Interpretation The demonstrated prognostic validity for most of the AI TIL models can be attributed to the intrinsic robustness of host anti-tumor immunity (measured by TILs) as a biomarker. However, the discrepancies between AI models should not be overlooked; rather, we believe that there is a critical need for an accessible, large, multi-centric dataset that will serve as a benchmark ensuring the comparability and reliability of different AI tools in clinical implementation. Funding Nikos Tsiknakis is supported by the Swedish Research Council (Grant Number 2021-03061, Theodoros Foukakis). Balazs Acs is supported by The Swedish Society for Medical Research (Svenska Sällskapet för Medicinsk Forskning) postdoctoral grant. Roberto Salgado is supported by a grant from Breast Cancer Research Foundation (BCRF).
Collapse
Affiliation(s)
- Joan Martínez Vidal
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Nikos Tsiknakis
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Staaf
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Ana Bosch
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Region Skåne, Lund, Sweden
| | - Anna Ehinger
- Department of Genetics, Pathology and Molecular Diagnostics, Laboratory Medicine, Region Skåne, Lund, Sweden
| | - Emma Nimeus
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
- Division of Surgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Yalai Bai
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - David L. Rimm
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Balazs Acs
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Fiorin A, López Pablo C, Lejeune M, Hamza Siraj A, Della Mea V. Enhancing AI Research for Breast Cancer: A Comprehensive Review of Tumor-Infiltrating Lymphocyte Datasets. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2996-3008. [PMID: 38806950 PMCID: PMC11612116 DOI: 10.1007/s10278-024-01043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 05/30/2024]
Abstract
The field of immunology is fundamental to our understanding of the intricate dynamics of the tumor microenvironment. In particular, tumor-infiltrating lymphocyte (TIL) assessment emerges as essential aspect in breast cancer cases. To gain comprehensive insights, the quantification of TILs through computer-assisted pathology (CAP) tools has become a prominent approach, employing advanced artificial intelligence models based on deep learning techniques. The successful recognition of TILs requires the models to be trained, a process that demands access to annotated datasets. Unfortunately, this task is hampered not only by the scarcity of such datasets, but also by the time-consuming nature of the annotation phase required to create them. Our review endeavors to examine publicly accessible datasets pertaining to the TIL domain and thereby become a valuable resource for the TIL community. The overall aim of the present review is thus to make it easier to train and validate current and upcoming CAP tools for TIL assessment by inspecting and evaluating existing publicly available online datasets.
Collapse
Affiliation(s)
- Alessio Fiorin
- Oncological Pathology and Bioinformatics Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), C/Esplanetes no 14, 43500, Tortosa, Spain.
- Department of Pathology, Hospital de Tortosa Verge de la Cinta (HTVC), Institut Català de la Salut (ICS), C/Esplanetes no 14, 43500, Tortosa, Spain.
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili (URV), Tarragona, Spain.
| | - Carlos López Pablo
- Oncological Pathology and Bioinformatics Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), C/Esplanetes no 14, 43500, Tortosa, Spain.
- Department of Pathology, Hospital de Tortosa Verge de la Cinta (HTVC), Institut Català de la Salut (ICS), C/Esplanetes no 14, 43500, Tortosa, Spain.
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili (URV), Tarragona, Spain.
| | - Marylène Lejeune
- Oncological Pathology and Bioinformatics Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), C/Esplanetes no 14, 43500, Tortosa, Spain
- Department of Pathology, Hospital de Tortosa Verge de la Cinta (HTVC), Institut Català de la Salut (ICS), C/Esplanetes no 14, 43500, Tortosa, Spain
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Ameer Hamza Siraj
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| | - Vincenzo Della Mea
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| |
Collapse
|
6
|
Kumar S, Chatterjee S. HistoSPACE: Histology-inspired spatial transcriptome prediction and characterization engine. Methods 2024; 232:107-114. [PMID: 39521362 DOI: 10.1016/j.ymeth.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Spatial transcriptomics (ST) enables the visualization of gene expression within the context of tissue morphology. This emerging discipline has the potential to serve as a foundation for developing tools to design precision medicines. However, due to the higher costs and expertise required for such experiments, its translation into a regular clinical practice might be challenging. Despite implementing modern deep learning to enhance information obtained from histological images using AI, efforts have been constrained by limitations in the diversity of information. In this paper, we developed a model, HistoSPACE, that explores the diversity of histological images available with ST data to extract molecular insights from tissue images. Further, our approach allows us to link the predicted expression with disease pathology. Our proposed study built an image encoder derived from a universal image autoencoder. This image encoder was connected to convolution blocks to build the final model. It was further fine-tuned with the help of ST-Data. The number of model parameters is small and requires lesser system memory and relatively lesser training time. Making it lightweight in comparison to traditional histological models. Our developed model demonstrates significant efficiency compared to contemporary algorithms, revealing a correlation of 0.56 in leave-one-out cross-validation. Finally, its robustness was validated through an independent dataset, showing similar prediction with predefined disease pathology. Our code is available at https://github.com/samrat-lab/HistoSPACE.
Collapse
Affiliation(s)
- Shivam Kumar
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.
| |
Collapse
|
7
|
Liu J, Sun D, Xu S, Shen J, Ma W, Zhou H, Ma Y, Zhang Y, Fang W, Zhao Y, Hong S, Zhan J, Hou X, Zhao H, Huang Y, He B, Yang Y, Zhang L. Association of artificial intelligence-based immunoscore with the efficacy of chemoimmunotherapy in patients with advanced non-squamous non-small cell lung cancer: a multicentre retrospective study. Front Immunol 2024; 15:1485703. [PMID: 39569187 PMCID: PMC11576461 DOI: 10.3389/fimmu.2024.1485703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Purpose Currently, chemoimmunotherapy is effective only in a subset of patients with advanced non-squamous non-small cell lung cancer. Robust biomarkers for predicting the efficacy of chemoimmunotherapy would be useful to identify patients who would benefit from chemoimmunotherapy. The primary objective of our study was to develop an artificial intelligence-based immunoscore and to evaluate the value of patho-immunoscore in predicting clinical outcomes in patients with advanced non-squamous non-small cell lung cancer (NSCLC). Methods We have developed an artificial intelligence-powered immunoscore analyzer based on 1,333 whole-slide images from TCGA-LUAD. The predictive efficacy of the model was further validated in the CPTAC-LUAD cohort and the biomarker cohort of the ORIENT-11 study, a randomized, double-blind, phase 3 study. Finally, the clinical significance of the patho-immunoscore was evaluated using the ORIENT-11 study cohort. Results Our immunoscore analyzer achieved good accuracy in all the three cohort mentioned above (TCGA-LUAD, mean AUC: 0.783; ORIENT-11 cohort, AUC: 0.741; CPTAC-LUAD cohort, AUC: 0.769). In the 259 patients treated with chemoimmunotherapy, those with high patho-immunoscore (n = 146) showed significantly longer median progression-free survival than those with low patho-immunoscore (n = 113) (13.8 months vs 7.13 months, hazard ratio [HR]: 0.53, 95% confidence interval [CI]: 0.38 - 0.73; p < 0.001). In contrast, no significant difference was observed in patients who were treated with chemotherapy only (5.07 months vs 5.07 months, HR: 1.04, 95% CI: 0.71 - 1.54; p = 0.83). Similar trends were observed in overall survival. Conclusion Our study indicates that AI-powered immunoscore applied on LUAD digital slides can serve as a biomarker for survival outcomes in patients with advanced non-squamous NSCLC who received chemoimmunotherapy. This methodology could be applied to other cancers and facilitate cancer immunotherapy.
Collapse
Affiliation(s)
- Jiaqing Liu
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongchen Sun
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Jiayi Shen
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenjuan Ma
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huaqiang Zhou
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuxiang Ma
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yaxiong Zhang
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenfeng Fang
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuanyuan Zhao
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shaodong Hong
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianhua Zhan
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xue Hou
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongyun Zhao
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Huang
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Yunpeng Yang
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
8
|
Vorontsov E, Bozkurt A, Casson A, Shaikovski G, Zelechowski M, Severson K, Zimmermann E, Hall J, Tenenholtz N, Fusi N, Yang E, Mathieu P, van Eck A, Lee D, Viret J, Robert E, Wang YK, Kunz JD, Lee MCH, Bernhard JH, Godrich RA, Oakley G, Millar E, Hanna M, Wen H, Retamero JA, Moye WA, Yousfi R, Kanan C, Klimstra DS, Rothrock B, Liu S, Fuchs TJ. A foundation model for clinical-grade computational pathology and rare cancers detection. Nat Med 2024; 30:2924-2935. [PMID: 39039250 PMCID: PMC11485232 DOI: 10.1038/s41591-024-03141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024]
Abstract
The analysis of histopathology images with artificial intelligence aims to enable clinical decision support systems and precision medicine. The success of such applications depends on the ability to model the diverse patterns observed in pathology images. To this end, we present Virchow, the largest foundation model for computational pathology to date. In addition to the evaluation of biomarker prediction and cell identification, we demonstrate that a large foundation model enables pan-cancer detection, achieving 0.95 specimen-level area under the (receiver operating characteristic) curve across nine common and seven rare cancers. Furthermore, we show that with less training data, the pan-cancer detector built on Virchow can achieve similar performance to tissue-specific clinical-grade models in production and outperform them on some rare variants of cancer. Virchow's performance gains highlight the value of a foundation model and open possibilities for many high-impact applications with limited amounts of labeled training data.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ellen Yang
- Memorial Sloan Kettering Cancer Center, New York, NY, US
| | | | | | | | | | | | | | | | | | | | | | | | - Ewan Millar
- NSW Health Pathology, St George Hospital, Sydney, New South Wales, Australia
| | - Matthew Hanna
- Memorial Sloan Kettering Cancer Center, New York, NY, US
| | - Hannah Wen
- Memorial Sloan Kettering Cancer Center, New York, NY, US
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Laurent-Bellue A, Sadraoui A, Claude L, Calderaro J, Posseme K, Vibert E, Cherqui D, Rosmorduc O, Lewin M, Pesquet JC, Guettier C. Deep Learning Classification and Quantification of Pejorative and Nonpejorative Architectures in Resected Hepatocellular Carcinoma from Digital Histopathologic Images. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1684-1700. [PMID: 38879083 DOI: 10.1016/j.ajpath.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
Liver resection is one of the best treatments for small hepatocellular carcinoma (HCC), but post-resection recurrence is frequent. Biotherapies have emerged as an efficient adjuvant treatment, making the identification of patients at high risk of recurrence critical. Microvascular invasion (mVI), poor differentiation, pejorative macrotrabecular architectures, and vessels encapsulating tumor clusters architectures are the most accurate histologic predictors of recurrence, but their evaluation is time-consuming and imperfect. Herein, a supervised deep learning-based approach with ResNet34 on 680 whole slide images (WSIs) from 107 liver resection specimens was used to build an algorithm for the identification and quantification of these pejorative architectures. This model achieved an accuracy of 0.864 at patch level and 0.823 at WSI level. To assess its robustness, it was validated on an external cohort of 29 HCCs from another hospital, with an accuracy of 0.787 at WSI level, affirming its generalization capabilities. Moreover, the largest connected areas of the pejorative architectures extracted from the model were positively correlated to the presence of mVI and the number of tumor emboli. These results suggest that the identification of pejorative architectures could be an efficient surrogate of mVI and have a strong predictive value for the risk of recurrence. This study is the first step in the construction of a composite predictive algorithm for early post-resection recurrence of HCC, including artificial intelligence-based features.
Collapse
Affiliation(s)
- Astrid Laurent-Bellue
- Department of Pathology, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Aymen Sadraoui
- Centre de Vision Numérique, Paris-Saclay University, Inria, CentraleSupélec, Gif-sur-Yvette, France
| | - Laura Claude
- Department of Pathology, Charles Nicolle Hospital, Rouen, France
| | - Julien Calderaro
- Department of Pathology, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Katia Posseme
- Department of Pathology, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Eric Vibert
- Centre Hépato-Biliaire, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France; Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, France; Unité Mixte de Recherche 1193, Paris-Saclay University, INSERM, Villejuif, France
| | - Daniel Cherqui
- Centre Hépato-Biliaire, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France; Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, France; Unité Mixte de Recherche 1193, Paris-Saclay University, INSERM, Villejuif, France
| | - Olivier Rosmorduc
- Centre Hépato-Biliaire, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France; Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, France; Unité Mixte de Recherche 1193, Paris-Saclay University, INSERM, Villejuif, France
| | - Maïté Lewin
- Centre Hépato-Biliaire, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France; Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, France; Unité Mixte de Recherche 1193, Paris-Saclay University, INSERM, Villejuif, France
| | - Jean-Christophe Pesquet
- Centre de Vision Numérique, Paris-Saclay University, Inria, CentraleSupélec, Gif-sur-Yvette, France
| | - Catherine Guettier
- Department of Pathology, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.
| |
Collapse
|
10
|
Miyahira AK, Kamran SC, Jamaspishvili T, Marshall CH, Maxwell KN, Parolia A, Zorko NA, Pienta KJ, Soule HR. Disrupting prostate cancer research: Challenge accepted; report from the 2023 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2024; 84:993-1015. [PMID: 38682886 DOI: 10.1002/pros.24721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION The 2023 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, themed "Disrupting Prostate Cancer Research: Challenge Accepted," was convened at the University of California, Los Angeles, Luskin Conference Center, in Los Angeles, CA, from June 22 to 25, 2023. METHODS The 2023 marked the 10th Annual CHPCA Meeting, a discussion-oriented scientific think-tank conference convened annually by the Prostate Cancer Foundation, which centers on innovative and emerging research topics deemed pivotal for advancing critical unmet needs in prostate cancer research and clinical care. The 2023 CHPCA Meeting was attended by 81 academic investigators and included 40 talks across 8 sessions. RESULTS The central topic areas covered at the meeting included: targeting transcription factor neo-enhancesomes in cancer, AR as a pro-differentiation and oncogenic transcription factor, why few are cured with androgen deprivation therapy and how to change dogma to cure metastatic prostate cancer without castration, reducing prostate cancer morbidity and mortality with genetics, opportunities for radiation to enhance therapeutic benefit in oligometastatic prostate cancer, novel immunotherapeutic approaches, and the new era of artificial intelligence-driven precision medicine. DISCUSSION This article provides an overview of the scientific presentations delivered at the 2023 CHPCA Meeting, such that this knowledge can help in facilitating the advancement of prostate cancer research worldwide.
Collapse
Affiliation(s)
- Andrea K Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| | - Sophia C Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tamara Jamaspishvili
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Catherine H Marshall
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kara N Maxwell
- Department of Medicine-Hematology/Oncology and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Medicine Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Abhijit Parolia
- Department of Pathology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas A Zorko
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Howard R Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
11
|
Chang J, Hatfield B. Advancements in computer vision and pathology: Unraveling the potential of artificial intelligence for precision diagnosis and beyond. Adv Cancer Res 2024; 161:431-478. [PMID: 39032956 DOI: 10.1016/bs.acr.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The integration of computer vision into pathology through slide digitalization represents a transformative leap in the field's evolution. Traditional pathology methods, while reliable, are often time-consuming and susceptible to intra- and interobserver variability. In contrast, computer vision, empowered by artificial intelligence (AI) and machine learning (ML), promises revolutionary changes, offering consistent, reproducible, and objective results with ever-increasing speed and scalability. The applications of advanced algorithms and deep learning architectures like CNNs and U-Nets augment pathologists' diagnostic capabilities, opening new frontiers in automated image analysis. As these technologies mature and integrate into digital pathology workflows, they are poised to provide deeper insights into disease processes, quantify and standardize biomarkers, enhance patient outcomes, and automate routine tasks, reducing pathologists' workload. However, this transformative force calls for cross-disciplinary collaboration between pathologists, computer scientists, and industry innovators to drive research and development. While acknowledging its potential, this chapter addresses the limitations of AI in pathology, encompassing technical, practical, and ethical considerations during development and implementation.
Collapse
Affiliation(s)
- Justin Chang
- Virginia Commonwealth University Health System, Richmond, VA, United States
| | - Bryce Hatfield
- Virginia Commonwealth University Health System, Richmond, VA, United States.
| |
Collapse
|
12
|
Hacking SM, Windsor G, Cooper R, Jiao Z, Lourenco A, Wang Y. A novel approach correlating pathologic complete response with digital pathology and radiomics in triple-negative breast cancer. Breast Cancer 2024; 31:529-535. [PMID: 38351366 DOI: 10.1007/s12282-024-01544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/05/2024] [Indexed: 04/26/2024]
Abstract
This rapid communication highlights the correlations between digital pathology-whole slide imaging (WSI) and radiomics-magnetic resonance imaging (MRI) features in triple-negative breast cancer (TNBC) patients. The research collected 12 patients who had both core needle biopsy and MRI performed to evaluate pathologic complete response (pCR). The results showed that higher collagenous values in pathology data were correlated with more homogeneity, whereas higher tumor expression values in pathology data correlated with less homogeneity in the appearance of tumors on MRI by size zone non-uniformity normalized (SZNN). Higher myxoid values in pathology data are correlated with less similarity of gray-level non-uniformity (GLN) in tumor regions on MRIs, while higher immune values in WSIs correlated with the more joint distribution of smaller-size zones by small area low gray-level emphasis (SALGE) in the tumor regions on MRIs. Pathologic complete response (pCR) was associated with collagen, tumor, and myxoid expression in WSI and GLN and SZNN in radiomic features. The correlations of WSI and radiomic features may further our understanding of the TNBC tumoral microenvironment (TME) and could be used in the future to better tailor the use of neoadjuvant chemotherapy (NAC). This communication will focus on the post-NAC MRI features correlated with pCR and their association with WSI features from core needle biopsies.
Collapse
Affiliation(s)
- Sean M Hacking
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Gabrielle Windsor
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Robert Cooper
- Department of Radiology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Zhicheng Jiao
- Department of Radiology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ana Lourenco
- Department of Radiology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
13
|
Sun K, Zheng Y, Yang X, Jia W. A novel transformer-based aggregation model for predicting gene mutations in lung adenocarcinoma. Med Biol Eng Comput 2024; 62:1427-1440. [PMID: 38233683 DOI: 10.1007/s11517-023-03004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
In recent years, predicting gene mutations on whole slide imaging (WSI) has gained prominence. The primary challenge is extracting global information and achieving unbiased semantic aggregation. To address this challenge, we propose a novel Transformer-based aggregation model, employing a self-learning weight aggregation mechanism to mitigate semantic bias caused by the abundance of features in WSI. Additionally, we adopt a random patch training method, which enhances model learning richness by randomly extracting feature vectors from WSI, thus addressing the issue of limited data. To demonstrate the model's effectiveness in predicting gene mutations, we leverage the lung adenocarcinoma dataset from Shandong Provincial Hospital for prior knowledge learning. Subsequently, we assess TP53, CSMD3, LRP1B, and TTN gene mutations using lung adenocarcinoma tissue pathology images and clinical data from The Cancer Genome Atlas (TCGA). The results indicate a notable increase in the AUC (Area Under the ROC Curve) value, averaging 4%, attesting to the model's performance improvement. Our research offers an efficient model to explore the correlation between pathological image features and molecular characteristics in lung adenocarcinoma patients. This model introduces a novel approach to clinical genetic testing, expected to enhance the efficiency of identifying molecular features and genetic testing in lung adenocarcinoma patients, ultimately providing more accurate and reliable results for related studies.
Collapse
Affiliation(s)
- Kai Sun
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Xinbo Yang
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Weikuan Jia
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, 250014, China.
| |
Collapse
|
14
|
Chen RJ, Ding T, Lu MY, Williamson DFK, Jaume G, Song AH, Chen B, Zhang A, Shao D, Shaban M, Williams M, Oldenburg L, Weishaupt LL, Wang JJ, Vaidya A, Le LP, Gerber G, Sahai S, Williams W, Mahmood F. Towards a general-purpose foundation model for computational pathology. Nat Med 2024; 30:850-862. [PMID: 38504018 PMCID: PMC11403354 DOI: 10.1038/s41591-024-02857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
Quantitative evaluation of tissue images is crucial for computational pathology (CPath) tasks, requiring the objective characterization of histopathological entities from whole-slide images (WSIs). The high resolution of WSIs and the variability of morphological features present significant challenges, complicating the large-scale annotation of data for high-performance applications. To address this challenge, current efforts have proposed the use of pretrained image encoders through transfer learning from natural image datasets or self-supervised learning on publicly available histopathology datasets, but have not been extensively developed and evaluated across diverse tissue types at scale. We introduce UNI, a general-purpose self-supervised model for pathology, pretrained using more than 100 million images from over 100,000 diagnostic H&E-stained WSIs (>77 TB of data) across 20 major tissue types. The model was evaluated on 34 representative CPath tasks of varying diagnostic difficulty. In addition to outperforming previous state-of-the-art models, we demonstrate new modeling capabilities in CPath such as resolution-agnostic tissue classification, slide classification using few-shot class prototypes, and disease subtyping generalization in classifying up to 108 cancer types in the OncoTree classification system. UNI advances unsupervised representation learning at scale in CPath in terms of both pretraining data and downstream evaluation, enabling data-efficient artificial intelligence models that can generalize and transfer to a wide range of diagnostically challenging tasks and clinical workflows in anatomic pathology.
Collapse
Affiliation(s)
- Richard J Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Tong Ding
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Ming Y Lu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Drew F K Williamson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Guillaume Jaume
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew H Song
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bowen Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Zhang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Daniel Shao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Muhammad Shaban
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mane Williams
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Lukas Oldenburg
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luca L Weishaupt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Judy J Wang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anurag Vaidya
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Long Phi Le
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Georg Gerber
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sharifa Sahai
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Systems Biology, Harvard University, Cambridge, MA, USA
| | - Walt Williams
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Data Science Initiative, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
15
|
Jahangir CA, Page DB, Broeckx G, Gonzalez CA, Burke C, Murphy C, Reis-Filho JS, Ly A, Harms PW, Gupta RR, Vieth M, Hida AI, Kahila M, Kos Z, van Diest PJ, Verbandt S, Thagaard J, Khiroya R, Abduljabbar K, Haab GA, Acs B, Adams S, Almeida JS, Alvarado-Cabrero I, Azmoudeh-Ardalan F, Badve S, Baharun NB, Bellolio ER, Bheemaraju V, Blenman KRM, Fujimoto LBM, Burgues O, Chardas A, Cheang MCU, Ciompi F, Cooper LAD, Coosemans A, Corredor G, Portela FLD, Deman F, Demaria S, Dudgeon SN, Elghazawy M, Fernandez-Martín C, Fineberg S, Fox SB, Giltnane JM, Gnjatic S, Gonzalez-Ericsson PI, Grigoriadis A, Halama N, Hanna MG, Harbhajanka A, Hart SN, Hartman J, Hewitt S, Horlings HM, Husain Z, Irshad S, Janssen EAM, Kataoka TR, Kawaguchi K, Khramtsov AI, Kiraz U, Kirtani P, Kodach LL, Korski K, Akturk G, Scott E, Kovács A, Lænkholm AV, Lang-Schwarz C, Larsimont D, Lennerz JK, Lerousseau M, Li X, Madabhushi A, Maley SK, Narasimhamurthy VM, Marks DK, McDonald ES, Mehrotra R, Michiels S, Kharidehal D, Minhas FUAA, Mittal S, Moore DA, Mushtaq S, Nighat H, Papathomas T, Penault-Llorca F, Perera RD, Pinard CJ, Pinto-Cardenas JC, Pruneri G, Pusztai L, Rajpoot NM, Rapoport BL, Rau TT, Ribeiro JM, Rimm D, Vincent-Salomon A, Saltz J, Sayed S, Hytopoulos E, Mahon S, Siziopikou KP, Sotiriou C, Stenzinger A, Sughayer MA, Sur D, Symmans F, Tanaka S, Taxter T, Tejpar S, Teuwen J, Thompson EA, Tramm T, Tran WT, van der Laak J, Verghese GE, Viale G, Wahab N, Walter T, Waumans Y, Wen HY, Yang W, Yuan Y, Bartlett J, Loibl S, Denkert C, Savas P, Loi S, Stovgaard ES, Salgado R, Gallagher WM, Rahman A. Image-based multiplex immune profiling of cancer tissues: translational implications. A report of the International Immuno-oncology Biomarker Working Group on Breast Cancer. J Pathol 2024; 262:271-288. [PMID: 38230434 PMCID: PMC11288342 DOI: 10.1002/path.6238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/17/2023] [Indexed: 01/18/2024]
Abstract
Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now provide unprecedented insights into the tumour microenvironment, including the potential interplay between various cell types. However, there are significant challenges to widespread integration of these technologies in daily research and clinical practice. This review addresses the challenges and potential solutions within a structured framework of action from a regulatory and clinical trial perspective. New developments within the field of immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described, with a specific focus on translational implications across different subtypes of cancer. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Chowdhury Arif Jahangir
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - David B Page
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Glenn Broeckx
- Department of Pathology PA, GZA-ZNA Hospitals, Antwerp, Belgium
- Centre for Oncological Research (CORE), MIPPRO, Faculty of Medicine, Antwerp University, Antwerp, Belgium
| | - Claudia A Gonzalez
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Caoimbhe Burke
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Clodagh Murphy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Paul W Harms
- Departments of Pathology and Dermatology, University of Michigan, Ann Arbor, Ml, USA
| | - Rajarsi R Gupta
- Department of Biomedical informatics, Stony Brook University, Stony Brook, NY, USA
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth GmbH, Friedrich-Alexander-University Erlangen-Nuremberg, Bayreuth, Germany
| | - Akira I Hida
- Department of Pathology, Matsuyama Shimin Hospital, Matsuyama, Japan
| | - Mohamed Kahila
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Zuzana Kos
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC Cancer, Vancouver, British Columbia, Canada
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
- Johns Hopkins Oncology Center, Baltimore, MD, USA
| | - Sara Verbandt
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jeppe Thagaard
- Technical University of Denmark, Kgs. Lyngby, Denmark
- Visiopharm A/S, Hørsholm, Denmark
| | - Reena Khiroya
- Department of Cellular Pathology, University College Hospital, London, UK
| | - Khalid Abduljabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | | | - Balazs Acs
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Sylvia Adams
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, Manhattan, NY, USA
| | - Jonas S Almeida
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA
| | | | | | - Sunil Badve
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory University Winship Cancer Institute, Atlanta, GA, USA
| | | | - Enrique R Bellolio
- Departamento de Anatomía Patológica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | | | - Kim RM Blenman
- Department of internal Medicine Section of Medical Oncology and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Department of Computer Science, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | | | - Octavio Burgues
- Pathology Department, Hospital Cliníco Universitario de Valencia/lncliva, Valencia, Spain
| | - Alexandros Chardas
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, London, UK
| | - Maggie Chon U Cheang
- Head of Integrative Genomics Analysis in Clinical Trials, ICR-CTSU, Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Francesco Ciompi
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lee AD Cooper
- Department of Pathology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium
| | - Germán Corredor
- Biomedical Engineering Department, Emory University, Atlanta, GA, USA
| | | | - Frederik Deman
- Department of Pathology PA, GZA-ZNA Hospitals, Antwerp, Belgium
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Pathology, Weill Cornell Medicine, New York NY, USA
| | - Sarah N Dudgeon
- Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Mahmoud Elghazawy
- University of Surrey, Guildford, UK
- Ain Shams University, Cairo, Egypt
| | - Claudio Fernandez-Martín
- Institute Universitario de Investigatión en Tecnología Centrada en el Ser Humano, HUMAN-tech, Universitat Politècnica de València, Valencia, Spain
| | - Susan Fineberg
- Montefiore Medical Center and the Albert Einstein College of Medicine, New York, NY, USA
| | - Stephen B Fox
- Pathology, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Sacha Gnjatic
- Department of Oncological Sciences, Medicine Hem/One, and Pathology, Tisch Cancer Institute – Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | | | - Anita Grigoriadis
- Cancer Bioinformatics, Faculty of Life Sciences and Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London, UK
- The Breast Cancer Now Research Unit Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Niels Halama
- Department of Translational Immunotherapy, German Cancer Research Center, Heidelberg, Germany
| | | | | | - Steven N Hart
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Johan Hartman
- Tehran University of Medical Sciences, Tehran, Iran
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stephen Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hugo M Horlings
- Division of Pathology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | - Sheeba Irshad
- King's College London & Guys & St Thomas NHS Trust London, UK
| | - Emiel AM Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
| | | | - Kosuke Kawaguchi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Andrey I Khramtsov
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Umay Kiraz
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
| | - Pawan Kirtani
- Histopathology, Aakash Healthcare Super Speciality Hospital, New Delhi, India
| | - Liudmila L Kodach
- Department of Pathology, Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Konstanty Korski
- Data, Analytics and Imaging, Product Development, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Guray Akturk
- Translational Molecular Biomarkers, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Ely Scott
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, USA
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne-Vibeke Lænkholm
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
- Department of Surgical Pathology, University of Copenhagen, Copenhagen, Denmark
| | - Corinna Lang-Schwarz
- Institute of Pathology, Klinikum Bayreuth GmbH, Friedrich-Alexander-University Erlangen-Nuremberg, Bayreuth, Germany
| | - Denis Larsimont
- Institut Jules Bordet Université Libre de Bruxelles, Brussels, Belgium
| | - Jochen K Lennerz
- Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Marvin Lerousseau
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, Paris, France
- Institut Curie, PSL University, Paris, France
- INSERM U900, Paris, France
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Radiology and Imaging Sciences, Biomedical Informatics, Pathology, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sai K Maley
- NRG Oncology/NSABP Foundation, Pittsburgh, PA, USA
| | | | - Douglas K Marks
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Elizabeth S McDonald
- Breast Cancer Translational Research Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi Mehrotra
- Indian Cancer Genomic Atlas, Pune, India
- Centre for Health, Innovation and Policy Foundation, Noida, India
| | - Stefan Michiels
- Office of Biostatistics and Epidemiology, Gustave Roussy, Oncostat U1018, Inserm, University Paris-Saclay, Ligue Contre le Cancer labeled Team, Villejuif France
| | - Durga Kharidehal
- Department of Pathology, Narayana Medical College and Hospital, Nellore, India
| | - Fayyaz ul Amir Afsar Minhas
- Tissue Image Analytics Centre, Warwick Cancer Research Centre, PathLAKE Consortium, Department of Computer Science, University of Warwick, Coventry, UK
| | - Shachi Mittal
- Department of Chemical Engineering, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - David A Moore
- CRUK Lung Cancer Centre of Excellence, UCL and Cellular Pathology Department UCLH, London, UK
| | - Shamim Mushtaq
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
| | - Hussain Nighat
- Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Raipur, India
| | - Thomas Papathomas
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Clinical Pathology, Drammen Sykehus, Vestre Viken HF, Drammen, Norway
| | - Frederique Penault-Llorca
- Service de Pathologie et Biopathologie, Centre Jean PERRIN, INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Rashindrie D Perera
- School of Electrical, Mechanical and Infrastructure Engineering, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Christopher J Pinard
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Department of Oncology, Lakeshore Animal Health Partners, Mississauga, Ontario, Canada
- Centre for Advancing Responsible and Ethical Artificial Intelligence (CARE-AI), University of Guelph, Guelph, Ontario, Canada
| | | | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Lajos Pusztai
- Yale Cancer Center, Yale University, New Haven, CT, USA
- Department of Medical Oncology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | | | - Bernardo Leon Rapoport
- The Medical Oncology Centre of Rosebank Johannesburg South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Tilman T Rau
- Institute of Pathology, University Hospital Düsseldorf and Heinrich-Heine-University, Düsseldorf Germany
| | | | - David Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anne Vincent-Salomon
- Department of Diagnostic and Theranostic Medicine, Institut Curie, University Paris-Sciences et Lettres, Paris, France
| | - Joel Saltz
- Department of Biomedical Informatics, Stony Brook Medicine, New York NY, USA
| | - Shahin Sayed
- Department of Pathology, Aga Khan University, Nairobi, Kenya
| | - Evangelos Hytopoulos
- Department of Pathology, Aga Khan University, Nairobi, Kenya
- iRhythm Technologies Inc., San Francisco, CA, USA
| | - Sarah Mahon
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Kalliopi P Siziopikou
- Department of Pathology, Section of Breast Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Medical Oncology Department Institut Jules Bordet Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Centers for Personalized Medicine (ZPM), Heidelberg, Germany
| | | | - Daniel Sur
- Department of Medical Oncology, University of Medicine and Pharmacy “luliu Hatieganu ”, Cluj-Napoca, Romania
| | - Fraser Symmans
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sabine Tejpar
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jonas Teuwen
- Al for Oncology Lab, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Trine Tramm
- Department of Pathology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - William T Tran
- Department of Radiation Oncology, University of Toronto and Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Jeroen van der Laak
- Head of Integrative Genomics Analysis in Clinical Trials, ICR-CTSU, Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Gregory E Verghese
- Cancer Bioinformatics, Faculty of Life Sciences and Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London, UK
- The Breast Cancer Now Research Unit Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Giuseppe Viale
- Department of Pathology, European Institute of Oncology & University of Milan, Milan, Italy
| | - Noorul Wahab
- Tissue Image Analytics Centre, Department of Computer Science, University of Wanwick Coventry, UK
| | - Thomas Walter
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, Paris, France
- Institut Curie, PSL University, Paris, France
- INSERM U900, Paris, France
| | | | - Hannah Y Wen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wentao Yang
- Fudan Medical University Shanghai Cancer Center, Shanghai, PR China
| | - Yinyin Yuan
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Sibylle Loibl
- Department of Medicine and Research, German Breast Group, Neu-lsenburg Germany
| | - Carsten Denkert
- Institut für Pathologie, Philipps-Universität Marburg und Universitätsklinikum Marburg, Marburg, Germany
| | - Peter Savas
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Roberto Salgado
- Department of Pathology PA, GZA-ZNA Hospitals, Antwerp, Belgium
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Arman Rahman
- UCD School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Kaczmarzyk JR, O'Callaghan A, Inglis F, Gat S, Kurc T, Gupta R, Bremer E, Bankhead P, Saltz JH. Open and reusable deep learning for pathology with WSInfer and QuPath. NPJ Precis Oncol 2024; 8:9. [PMID: 38200147 PMCID: PMC10781748 DOI: 10.1038/s41698-024-00499-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Digital pathology has seen a proliferation of deep learning models in recent years, but many models are not readily reusable. To address this challenge, we developed WSInfer: an open-source software ecosystem designed to streamline the sharing and reuse of deep learning models for digital pathology. The increased access to trained models can augment research on the diagnostic, prognostic, and predictive capabilities of digital pathology.
Collapse
Affiliation(s)
- Jakub R Kaczmarzyk
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA.
| | - Alan O'Callaghan
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Fiona Inglis
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Swarad Gat
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | - Tahsin Kurc
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | - Rajarsi Gupta
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | - Erich Bremer
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | - Peter Bankhead
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology and CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Joel H Saltz
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
17
|
Yellapragada S, Graikos A, Prasanna P, Kurc T, Saltz J, Samaras D. PathLDM: Text conditioned Latent Diffusion Model for Histopathology. IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION. IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION 2024; 2024:5170-5179. [PMID: 38808304 PMCID: PMC11131586 DOI: 10.1109/wacv57701.2024.00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
To achieve high-quality results, diffusion models must be trained on large datasets. This can be notably prohibitive for models in specialized domains, such as computational pathology. Conditioning on labeled data is known to help in data-efficient model training. Therefore, histopathology reports, which are rich in valuable clinical information, are an ideal choice as guidance for a histopathology generative model. In this paper, we introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images. Leveraging the rich contextual information provided by pathology text reports, our approach fuses image and textual data to enhance the generation process. By utilizing GPT's capabilities to distill and summarize complex text reports, we establish an effective conditioning mechanism. Through strategic conditioning and necessary architectural enhancements, we achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1.
Collapse
|
18
|
Sauter D, Lodde G, Nensa F, Schadendorf D, Livingstone E, Kukuk M. A Systematic Comparison of Task Adaptation Techniques for Digital Histopathology. Bioengineering (Basel) 2023; 11:19. [PMID: 38247897 PMCID: PMC10813343 DOI: 10.3390/bioengineering11010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Due to an insufficient amount of image annotation, artificial intelligence in computational histopathology usually relies on fine-tuning pre-trained neural networks. While vanilla fine-tuning has shown to be effective, research on computer vision has recently proposed improved algorithms, promising better accuracy. While initial studies have demonstrated the benefits of these algorithms for medical AI, in particular for radiology, there is no empirical evidence for improved accuracy in histopathology. Therefore, based on the ConvNeXt architecture, our study performs a systematic comparison of nine task adaptation techniques, namely, DELTA, L2-SP, MARS-PGM, Bi-Tuning, BSS, MultiTune, SpotTune, Co-Tuning, and vanilla fine-tuning, on five histopathological classification tasks using eight datasets. The results are based on external testing and statistical validation and reveal a multifaceted picture: some techniques are better suited for histopathology than others, but depending on the classification task, a significant relative improvement in accuracy was observed for five advanced task adaptation techniques over the control method, i.e., vanilla fine-tuning (e.g., Co-Tuning: P(≫) = 0.942, d = 2.623). Furthermore, we studied the classification accuracy for three of the nine methods with respect to the training set size (e.g., Co-Tuning: P(≫) = 0.951, γ = 0.748). Overall, our results show that the performance of advanced task adaptation techniques in histopathology is affected by influencing factors such as the specific classification task or the size of the training dataset.
Collapse
Affiliation(s)
- Daniel Sauter
- Department of Computer Science, Fachhochschule Dortmund, 44227 Dortmund, Germany;
| | - Georg Lodde
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany; (G.L.); (D.S.); (E.L.)
| | - Felix Nensa
- Institute for AI in Medicine (IKIM), University Hospital Essen, 45131 Essen, Germany;
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, 45147 Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany; (G.L.); (D.S.); (E.L.)
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany; (G.L.); (D.S.); (E.L.)
| | - Markus Kukuk
- Department of Computer Science, Fachhochschule Dortmund, 44227 Dortmund, Germany;
| |
Collapse
|
19
|
Ugolini F, De Logu F, Iannone LF, Brutti F, Simi S, Maio V, de Giorgi V, Maria di Giacomo A, Miracco C, Federico F, Peris K, Palmieri G, Cossu A, Mandalà M, Massi D, Laurino M. Tumor-Infiltrating Lymphocyte Recognition in Primary Melanoma by Deep Learning Convolutional Neural Network. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:2099-2110. [PMID: 37734590 DOI: 10.1016/j.ajpath.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023]
Abstract
The presence of tumor-infiltrating lymphocytes (TILs) is associated with a favorable prognosis of primary melanoma (PM). Recently, artificial intelligence (AI)-based approach in digital pathology was proposed for the standardized assessment of TILs on hematoxylin and eosin-stained whole slide images (WSIs). Herein, the study applied a new convolution neural network (CNN) analysis of PM WSIs to automatically assess the infiltration of TILs and extract a TIL score. A CNN was trained and validated in a retrospective cohort of 307 PMs including a training set (237 WSIs, 57,758 patches) and an independent testing set (70 WSIs, 29,533 patches). An AI-based TIL density index (AI-TIL) was identified after the classification of tumor patches by the presence or absence of TILs. The proposed CNN showed high performance in recognizing TILs in PM WSIs, showing 100% specificity and sensitivity on the testing set. The AI-based TIL index correlated with conventional TIL evaluation and clinical outcome. The AI-TIL index was an independent prognostic marker associated directly with a favorable prognosis. A fully automated and standardized AI-TIL appeared to be superior to conventional methods at differentiating the PM clinical outcome. Further studies are required to develop an easy-to-use tool to assist pathologists to assess TILs in the clinical evaluation of solid tumors.
Collapse
Affiliation(s)
- Filippo Ugolini
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Francesco De Logu
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Luigi Francesco Iannone
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Francesca Brutti
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Sara Simi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Vincenza Maio
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Vincenzo de Giorgi
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Anna Maria di Giacomo
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University of Siena, Siena, Italy
| | - Clelia Miracco
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University of Siena, Siena, Italy
| | | | - Ketty Peris
- Institute of Dermatology, Sacred Heart Catholic University, Rome, Italy
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Genetic and Biomedical Research, National Research Council, Sassari, Italy
| | - Antonio Cossu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Mario Mandalà
- Oncology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Daniela Massi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Marco Laurino
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| |
Collapse
|
20
|
Kaczmarzyk JR, Gupta R, Kurc TM, Abousamra S, Saltz JH, Koo PK. ChampKit: A framework for rapid evaluation of deep neural networks for patch-based histopathology classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 239:107631. [PMID: 37271050 PMCID: PMC11093625 DOI: 10.1016/j.cmpb.2023.107631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/23/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Histopathology is the gold standard for diagnosis of many cancers. Recent advances in computer vision, specifically deep learning, have facilitated the analysis of histopathology images for many tasks, including the detection of immune cells and microsatellite instability. However, it remains difficult to identify optimal models and training configurations for different histopathology classification tasks due to the abundance of available architectures and the lack of systematic evaluations. Our objective in this work is to present a software tool that addresses this need and enables robust, systematic evaluation of neural network models for patch classification in histology in a light-weight, easy-to-use package for both algorithm developers and biomedical researchers. METHODS Here we present ChampKit (Comprehensive Histopathology Assessment of Model Predictions toolKit): an extensible, fully reproducible evaluation toolkit that is a one-stop-shop to train and evaluate deep neural networks for patch classification. ChampKit curates a broad range of public datasets. It enables training and evaluation of models supported by timm directly from the command line, without the need for users to write any code. External models are enabled through a straightforward API and minimal coding. As a result, Champkit facilitates the evaluation of existing and new models and deep learning architectures on pathology datasets, making it more accessible to the broader scientific community. To demonstrate the utility of ChampKit, we establish baseline performance for a subset of possible models that could be employed with ChampKit, focusing on several popular deep learning models, namely ResNet18, ResNet50, and R26-ViT, a hybrid vision transformer. In addition, we compare each model trained either from random weight initialization or with transfer learning from ImageNet pretrained models. For ResNet18, we also consider transfer learning from a self-supervised pretrained model. RESULTS The main result of this paper is the ChampKit software. Using ChampKit, we were able to systemically evaluate multiple neural networks across six datasets. We observed mixed results when evaluating the benefits of pretraining versus random intialization, with no clear benefit except in the low data regime, where transfer learning was found to be beneficial. Surprisingly, we found that transfer learning from self-supervised weights rarely improved performance, which is counter to other areas of computer vision. CONCLUSIONS Choosing the right model for a given digital pathology dataset is nontrivial. ChampKit provides a valuable tool to fill this gap by enabling the evaluation of hundreds of existing (or user-defined) deep learning models across a variety of pathology tasks. Source code and data for the tool are freely accessible at https://github.com/SBU-BMI/champkit.
Collapse
Affiliation(s)
- Jakub R Kaczmarzyk
- Department of Biomedical Informatics, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, 11794, NY, USA; Simons Center for Quantitative Biology, 1 Bungtown Rd, Cold Spring Harbor, 11724, NY, USA.
| | - Rajarsi Gupta
- Department of Biomedical Informatics, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, 11794, NY, USA
| | - Tahsin M Kurc
- Department of Biomedical Informatics, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, 11794, NY, USA
| | - Shahira Abousamra
- Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
| | - Joel H Saltz
- Department of Biomedical Informatics, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, 11794, NY, USA.
| | - Peter K Koo
- Simons Center for Quantitative Biology, 1 Bungtown Rd, Cold Spring Harbor, 11724, NY, USA.
| |
Collapse
|
21
|
Sauter D, Lodde G, Nensa F, Schadendorf D, Livingstone E, Kukuk M. Deep learning in computational dermatopathology of melanoma: A technical systematic literature review. Comput Biol Med 2023; 163:107083. [PMID: 37315382 DOI: 10.1016/j.compbiomed.2023.107083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023]
Abstract
Deep learning (DL) has become one of the major approaches in computational dermatopathology, evidenced by a significant increase in this topic in the current literature. We aim to provide a structured and comprehensive overview of peer-reviewed publications on DL applied to dermatopathology focused on melanoma. In comparison to well-published DL methods on non-medical images (e.g., classification on ImageNet), this field of application comprises a specific set of challenges, such as staining artifacts, large gigapixel images, and various magnification levels. Thus, we are particularly interested in the pathology-specific technical state-of-the-art. We also aim to summarize the best performances achieved thus far with respect to accuracy, along with an overview of self-reported limitations. Accordingly, we conducted a systematic literature review of peer-reviewed journal and conference articles published between 2012 and 2022 in the databases ACM Digital Library, Embase, IEEE Xplore, PubMed, and Scopus, expanded by forward and backward searches to identify 495 potentially eligible studies. After screening for relevance and quality, a total of 54 studies were included. We qualitatively summarized and analyzed these studies from technical, problem-oriented, and task-oriented perspectives. Our findings suggest that the technical aspects of DL for histopathology in melanoma can be further improved. The DL methodology was adopted later in this field, and still lacks the wider adoption of DL methods already shown to be effective for other applications. We also discuss upcoming trends toward ImageNet-based feature extraction and larger models. While DL has achieved human-competitive accuracy in routine pathological tasks, its performance on advanced tasks is still inferior to wet-lab testing (for example). Finally, we discuss the challenges impeding the translation of DL methods to clinical practice and provide insight into future research directions.
Collapse
Affiliation(s)
- Daniel Sauter
- Department of Computer Science, Fachhochschule Dortmund, 44227 Dortmund, Germany.
| | - Georg Lodde
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Felix Nensa
- Institute for AI in Medicine (IKIM), University Hospital Essen, 45131 Essen, Germany; Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, 45147 Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | | | - Markus Kukuk
- Department of Computer Science, Fachhochschule Dortmund, 44227 Dortmund, Germany
| |
Collapse
|
22
|
Thagaard J, Broeckx G, Page DB, Jahangir CA, Verbandt S, Kos Z, Gupta R, Khiroya R, Abduljabbar K, Acosta Haab G, Acs B, Akturk G, Almeida JS, Alvarado‐Cabrero I, Amgad M, Azmoudeh‐Ardalan F, Badve S, Baharun NB, Balslev E, Bellolio ER, Bheemaraju V, Blenman KRM, Botinelly Mendonça Fujimoto L, Bouchmaa N, Burgues O, Chardas A, Chon U Cheang M, Ciompi F, Cooper LAD, Coosemans A, Corredor G, Dahl AB, Dantas Portela FL, Deman F, Demaria S, Doré Hansen J, Dudgeon SN, Ebstrup T, Elghazawy M, Fernandez‐Martín C, Fox SB, Gallagher WM, Giltnane JM, Gnjatic S, Gonzalez‐Ericsson PI, Grigoriadis A, Halama N, Hanna MG, Harbhajanka A, Hart SN, Hartman J, Hauberg S, Hewitt S, Hida AI, Horlings HM, Husain Z, Hytopoulos E, Irshad S, Janssen EAM, Kahila M, Kataoka TR, Kawaguchi K, Kharidehal D, Khramtsov AI, Kiraz U, Kirtani P, Kodach LL, Korski K, Kovács A, Laenkholm A, Lang‐Schwarz C, Larsimont D, Lennerz JK, Lerousseau M, Li X, Ly A, Madabhushi A, Maley SK, Manur Narasimhamurthy V, Marks DK, McDonald ES, Mehrotra R, Michiels S, Minhas FUAA, Mittal S, Moore DA, Mushtaq S, Nighat H, Papathomas T, Penault‐Llorca F, Perera RD, Pinard CJ, Pinto‐Cardenas JC, Pruneri G, Pusztai L, Rahman A, Rajpoot NM, Rapoport BL, Rau TT, Reis‐Filho JS, Ribeiro JM, Rimm D, Roslind A, Vincent‐Salomon A, Salto‐Tellez M, Saltz J, Sayed S, Scott E, Siziopikou KP, Sotiriou C, Stenzinger A, Sughayer MA, Sur D, Fineberg S, Symmans F, Tanaka S, Taxter T, Tejpar S, Teuwen J, Thompson EA, Tramm T, Tran WT, van der Laak J, van Diest PJ, Verghese GE, Viale G, Vieth M, Wahab N, Walter T, Waumans Y, Wen HY, Yang W, Yuan Y, Zin RM, Adams S, Bartlett J, Loibl S, Denkert C, Savas P, Loi S, Salgado R, Specht Stovgaard E. Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer. J Pathol 2023; 260:498-513. [PMID: 37608772 PMCID: PMC10518802 DOI: 10.1002/path.6155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 08/24/2023]
Abstract
The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jeppe Thagaard
- Technical University of DenmarkKongens LyngbyDenmark
- Visiopharm A/SHørsholmDenmark
| | - Glenn Broeckx
- Department of PathologyGZA‐ZNA HospitalsAntwerpBelgium
- Centre for Oncological Research (CORE), MIPPRO, Faculty of MedicineAntwerp UniversityAntwerpBelgium
| | - David B Page
- Earle A Chiles Research InstituteProvidence Cancer InstitutePortlandORUSA
| | - Chowdhury Arif Jahangir
- UCD School of Biomolecular and Biomedical Science, UCD Conway InstituteUniversity College DublinDublinIreland
| | - Sara Verbandt
- Digestive Oncology, Department of OncologyKU LeuvenLeuvenBelgium
| | - Zuzana Kos
- Department of Pathology and Laboratory MedicineBC Cancer Vancouver Centre, University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Rajarsi Gupta
- Department of Biomedical InformaticsStony Brook UniversityStony BrookNYUSA
| | - Reena Khiroya
- Department of Cellular PathologyUniversity College Hospital LondonLondonUK
| | | | | | - Balazs Acs
- Department of Oncology and PathologyKarolinska InstitutetStockholmSweden
- Department of Clinical Pathology and Cancer DiagnosticsKarolinska University HospitalStockholmSweden
| | - Guray Akturk
- Translational Molecular Biomarkers, Merck & Co IncRahwayNJUSA
| | - Jonas S Almeida
- Division of Cancer Epidemiology and Genetics (DCEG)National Cancer Institute (NCI)Rockville, MDUSA
| | | | - Mohamed Amgad
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | | | - Sunil Badve
- Department of Pathology and Laboratory Medicine, Emory University School of MedicineEmory University Winship Cancer InstituteAtlantaGAUSA
| | | | - Eva Balslev
- Department of PathologyHerlev and Gentofte HospitalHerlevDenmark
| | - Enrique R Bellolio
- Departamento de Anatomía Patológica, Facultad de MedicinaUniversidad de La FronteraTemucoChile
| | | | - Kim RM Blenman
- Department of Internal Medicine Section of Medical Oncology and Yale Cancer CenterYale School of MedicineNew HavenCTUSA
- Department of Computer ScienceYale School of Engineering and Applied ScienceNew HavenCTUSA
| | | | - Najat Bouchmaa
- Institute of Biological Sciences, Faculty of Medical SciencesMohammed VI Polytechnic University (UM6P)Ben‐GuerirMorocco
| | - Octavio Burgues
- Pathology DepartmentHospital Cliníco Universitario de Valencia/InclivaValenciaSpain
| | - Alexandros Chardas
- Department of Pathobiology & Population SciencesThe Royal Veterinary CollegeLondonUK
| | - Maggie Chon U Cheang
- Head of Integrative Genomics Analysis in Clinical Trials, ICR‐CTSU, Division of Clinical StudiesThe Institute of Cancer ResearchLondonUK
| | - Francesco Ciompi
- Radboud University Medical CenterDepartment of PathologyNijmegenThe Netherlands
| | - Lee AD Cooper
- Department of PathologyNorthwestern Feinberg School of MedicineChicagoILUSA
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and ImmunotherapyKU LeuvenLeuvenBelgium
| | - Germán Corredor
- Biomedical Engineering DepartmentEmory UniversityAtlantaGAUSA
| | - Anders B Dahl
- Technical University of DenmarkKongens LyngbyDenmark
| | | | | | - Sandra Demaria
- Department of Radiation OncologyWeill Cornell MedicineNew YorkNYUSA
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
| | | | - Sarah N Dudgeon
- Conputational Biology and BioinformaticsYale UniversityNew HavenCTUSA
| | | | | | - Claudio Fernandez‐Martín
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, HUMAN‐techUniversitat Politècnica de ValènciaValenciaSpain
| | - Stephen B Fox
- Pathology, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway InstituteUniversity College DublinDublinIreland
| | | | - Sacha Gnjatic
- Department of Oncological Sciences, Medicine Hem/Onc, and Pathology, Tisch Cancer Institute – Precision Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | | | - Anita Grigoriadis
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- The Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Niels Halama
- Department of Translational ImmunotherapyGerman Cancer Research CenterHeidelbergGermany
| | - Matthew G Hanna
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
| | | | - Steven N Hart
- Department of Laboratory Medicine and PathologyMayo ClinicRochester, MNUSA
| | - Johan Hartman
- Department of Oncology and PathologyKarolinska InstitutetStockholmSweden
- Department of Clinical Pathology and Cancer DiagnosticsKarolinska University HospitalStockholmSweden
| | - Søren Hauberg
- Technical University of DenmarkKongens LyngbyDenmark
| | - Stephen Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Akira I Hida
- Department of PathologyMatsuyama Shimin HospitalMatsuyamaJapan
| | - Hugo M Horlings
- Division of PathologyNetherlands Cancer Institute (NKI)AmsterdamThe Netherlands
| | | | | | - Sheeba Irshad
- King's College London & Guy's & St Thomas’ NHS TrustLondonUK
| | - Emiel AM Janssen
- Department of PathologyStavanger University HospitalStavangerNorway
- Department of Chemistry, Bioscience and Environmental TechnologyUniversity of StavangerStavangerNorway
| | | | | | - Kosuke Kawaguchi
- Department of Breast SurgeryKyoto University Graduate School of MedicineKyotoJapan
| | | | - Andrey I Khramtsov
- Department of Pathology and Laboratory MedicineAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoILUSA
| | - Umay Kiraz
- Department of PathologyStavanger University HospitalStavangerNorway
- Department of Chemistry, Bioscience and Environmental TechnologyUniversity of StavangerStavangerNorway
| | - Pawan Kirtani
- Department of HistopathologyAakash Healthcare Super Speciality HospitalNew DelhiIndia
| | - Liudmila L Kodach
- Department of PathologyNetherlands Cancer Institute – Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
| | - Konstanty Korski
- Data, Analytics and Imaging, Product DevelopmentF. Hoffmann‐La Roche AGBaselSwitzerland
| | - Anikó Kovács
- Department of Clinical PathologySahlgrenska University HospitalGothenburgSweden
- Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Anne‐Vibeke Laenkholm
- Department of Surgical PathologyZealand University HospitalRoskildeDenmark
- Department of Surgical PathologyUniversity of CopenhagenCopenhagenDenmark
| | - Corinna Lang‐Schwarz
- Institute of Pathology, Klinikum Bayreuth GmbHFriedrich‐Alexander‐University Erlangen‐NurembergBayreuthGermany
| | - Denis Larsimont
- Institut Jules BordetUniversité Libre de BruxellesBrusselsBelgium
| | - Jochen K Lennerz
- Center for Integrated DiagnosticsMassachusetts General Hospital/Harvard Medical SchoolBostonMAUSA
| | - Marvin Lerousseau
- Centre for Computational Biology (CBIO)Mines Paris, PSL UniversityParisFrance
- Institut CuriePSL UniversityParisFrance
- INSERMParisFrance
| | - Xiaoxian Li
- Department of Pathology and Laboratory MedicineEmory UniversityAtlantaGAUSA
| | - Amy Ly
- Department of PathologyMassachusetts General HospitalBostonMAUSA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Radiology and Imaging Sciences, Biomedical Informatics, PathologyGeorgia Institute of Technology and Emory UniversityAtlantaGAUSA
| | - Sai K Maley
- NRG Oncology/NSABP FoundationPittsburghPAUSA
| | | | | | - Elizabeth S McDonald
- Breast Cancer Translational Research GroupUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Ravi Mehrotra
- Indian Cancer Genomic AtlasPuneIndia
- Centre for Health, Innovation and Policy FoundationNoidaIndia
| | - Stefan Michiels
- Office of Biostatistics and Epidemiology, Gustave Roussy, Oncostat U1018, InsermUniversity Paris‐Saclay, Ligue Contre le Cancer labeled TeamVillejuifFrance
| | - Fayyaz ul Amir Afsar Minhas
- Tissue Image Analytics Centre, Warwick Cancer Research Centre, PathLAKE Consortium, Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Shachi Mittal
- Department of Chemical Engineering, Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattle, WAUSA
| | - David A Moore
- CRUK Lung Cancer Centre of Excellence, UCL and Cellular Pathology DepartmentUCLHLondonUK
| | - Shamim Mushtaq
- Department of BiochemistryZiauddin UniversityKarachiPakistan
| | - Hussain Nighat
- Pathology and Laboratory MedicineAll India Institute of Medical sciencesRaipurIndia
| | - Thomas Papathomas
- Institute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
- Department of Clinical PathologyDrammen Sykehus, Vestre Viken HFDrammenNorway
| | - Frederique Penault‐Llorca
- Centre Jean Perrin, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies ThéranostiquesClermont FerrandFrance
| | - Rashindrie D Perera
- School of Electrical, Mechanical and Infrastructure EngineeringUniversity of MelbourneMelbourneVictoriaAustralia
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Christopher J Pinard
- Radiogenomics LaboratorySunnybrook Health Sciences CentreTorontoOntarioCanada
- Department of Clinical Studies, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
- Department of OncologyLakeshore Animal Health PartnersMississaugaOntarioCanada
- Centre for Advancing Responsible and Ethical Artificial Intelligence (CARE‐AI)University of GuelphGuelphOntarioCanada
| | | | - Giancarlo Pruneri
- Department of Pathology and Laboratory MedicineFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
- Faculty of Medicine and SurgeryUniversity of MilanMilanItaly
| | - Lajos Pusztai
- Yale Cancer CenterYale UniversityNew HavenCTUSA
- Department of Medical Oncology, Yale School of MedicineYale UniversityNew HavenCTUSA
| | - Arman Rahman
- UCD School of Biomolecular and Biomedical Science, UCD Conway InstituteUniversity College DublinDublinIreland
| | | | - Bernardo Leon Rapoport
- The Medical Oncology Centre of RosebankJohannesburgSouth Africa
- Department of Immunology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Tilman T Rau
- Institute of PathologyUniversity Hospital Düsseldorf and Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Jorge S Reis‐Filho
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Joana M Ribeiro
- Département de Médecine OncologiqueGustave RoussyVillejuifFrance
| | - David Rimm
- Department of PathologyYale University School of MedicineNew HavenCTUSA
- Department of MedicineYale University School of MedicineNew HavenCTUSA
| | - Anne Roslind
- Department of PathologyHerlev and Gentofte HospitalHerlevDenmark
| | - Anne Vincent‐Salomon
- Department of Diagnostic and Theranostic Medicine, Institut CurieUniversity Paris‐Sciences et LettresParisFrance
| | - Manuel Salto‐Tellez
- Integrated Pathology UnitThe Institute of Cancer ResearchLondonUK
- Precision Medicine CentreQueen's University BelfastBelfastUK
| | - Joel Saltz
- Department of Biomedical InformaticsStony Brook UniversityStony BrookNYUSA
| | - Shahin Sayed
- Department of PathologyAga Khan UniversityNairobiKenya
| | - Ely Scott
- Translational PathologyTranslational Sciences and Diagnostics/Translational Medicine/R&D, Bristol Myers SquibbPrincetonNJUSA
| | - Kalliopi P Siziopikou
- Department of Pathology, Section of Breast PathologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory J.‐C. Heuson, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB)Université Libre de Bruxelles (ULB)BrusselsBelgium
- Medical Oncology Department, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB)Université Libre de Bruxelles (ULB)BrusselsBelgium
| | - Albrecht Stenzinger
- Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
- Centers for Personalized Medicine (ZPM)HeidelbergGermany
| | | | - Daniel Sur
- Department of Medical OncologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu”Cluj‐NapocaRomania
| | - Susan Fineberg
- Montefiore Medical CenterBronxNYUSA
- Albert Einstein College of MedicineBronxNYUSA
| | - Fraser Symmans
- University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | | | | | - Sabine Tejpar
- Digestive Oncology, Department of OncologyKU LeuvenLeuvenBelgium
| | - Jonas Teuwen
- AI for Oncology Lab, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | | | - Trine Tramm
- Department of PathologyAarhus University HospitalAarhusDenmark
- Institute of Clinical MedicineAarhus UniversityAarhusDenmark
| | - William T Tran
- Department of Radiation OncologyUniversity of Toronto and Sunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Jeroen van der Laak
- Department of PathologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Paul J van Diest
- Department of PathologyUniversity Medical Center UtrechtThe Netherlands
- Johns Hopkins Oncology CenterBaltimoreMDUSA
| | - Gregory E Verghese
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- The Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Giuseppe Viale
- Department of PathologyEuropean Institute of OncologyMilanItaly
- Department of PathologyUniversity of MilanMilanItaly
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth GmbHFriedrich‐Alexander‐University Erlangen‐NurembergBayreuthGermany
| | - Noorul Wahab
- Tissue Image Analytics Centre, Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Thomas Walter
- Centre for Computational Biology (CBIO)Mines Paris, PSL UniversityParisFrance
- Institut CuriePSL UniversityParisFrance
- INSERMParisFrance
| | | | - Hannah Y Wen
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
| | - Wentao Yang
- Fudan Medical University Shanghai Cancer CenterShanghaiPR China
| | - Yinyin Yuan
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Reena Md Zin
- Department of Pathology, Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Sylvia Adams
- Perlmutter Cancer CenterNYU Langone HealthNew YorkNYUSA
- Department of MedicineNYU Grossman School of MedicineManhattanNYUSA
| | | | - Sibylle Loibl
- Department of Medicine and ResearchGerman Breast GroupNeu‐IsenburgGermany
| | - Carsten Denkert
- Institut für PathologiePhilipps‐Universität Marburg und Universitätsklinikum MarburgMarburgGermany
| | - Peter Savas
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- The Sir Peter MacCallum Department of Medical OncologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Sherene Loi
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- The Sir Peter MacCallum Department of Medical OncologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Roberto Salgado
- Department of PathologyGZA‐ZNA HospitalsAntwerpBelgium
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Elisabeth Specht Stovgaard
- Department of PathologyHerlev and Gentofte HospitalHerlevDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
23
|
Verdicchio M, Brancato V, Cavaliere C, Isgrò F, Salvatore M, Aiello M. A pathomic approach for tumor-infiltrating lymphocytes classification on breast cancer digital pathology images. Heliyon 2023; 9:e14371. [PMID: 36950640 PMCID: PMC10025040 DOI: 10.1016/j.heliyon.2023.e14371] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Background and objectives The detection of tumor-infiltrating lymphocytes (TILs) could aid in the development of objective measures of the infiltration grade and can support decision-making in breast cancer (BC). However, manual quantification of TILs in BC histopathological whole slide images (WSI) is currently based on a visual assessment, thus resulting not standardized, not reproducible, and time-consuming for pathologists. In this work, a novel pathomic approach, aimed to apply high-throughput image feature extraction techniques to analyze the microscopic patterns in WSI, is proposed. In fact, pathomic features provide additional information concerning the underlying biological processes compared to the WSI visual interpretation, thus providing more easily interpretable and explainable results than the most frequently investigated Deep Learning based methods in the literature. Methods A dataset containing 1037 regions of interest with tissue compartments and TILs annotated on 195 TNBC and HER2+ BC hematoxylin and eosin (H&E)-stained WSI was used. After segmenting nuclei within tumor-associated stroma using a watershed-based approach, 71 pathomic features were extracted from each nucleus and reduced using a Spearman's correlation filter followed by a nonparametric Wilcoxon rank-sum test and least absolute shrinkage and selection operator. The relevant features were used to classify each candidate nucleus as either TILs or non-TILs using 5 multivariable machine learning classification models trained using 5-fold cross-validation (1) without resampling, (2) with the synthetic minority over-sampling technique and (3) with downsampling. The prediction performance of the models was assessed using ROC curves. Results 21 features were selected, with most of them related to the well-known TILs properties of having regular shape, clearer margins, high peak intensity, more homogeneous enhancement and different textural pattern than other cells. The best performance was obtained by Random-Forest with ROC AUC of 0.86, regardless of resampling technique. Conclusions The presented approach holds promise for the classification of TILs in BC H&E-stained WSI and could provide support to pathologists for a reliable, rapid and interpretable clinical assessment of TILs in BC.
Collapse
Affiliation(s)
| | | | - Carlo Cavaliere
- IRCCS SYNLAB SDN, Via E. Gianturco 113, Naples, 80143, Italy
| | - Francesco Isgrò
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Claudio 21, Naples, 80125, Italy
| | - Marco Salvatore
- IRCCS SYNLAB SDN, Via E. Gianturco 113, Naples, 80143, Italy
| | - Marco Aiello
- IRCCS SYNLAB SDN, Via E. Gianturco 113, Naples, 80143, Italy
| |
Collapse
|
24
|
Whole-Slide Images and Patches of Clear Cell Renal Cell Carcinoma Tissue Sections Counterstained with Hoechst 33342, CD3, and CD8 Using Multiple Immunofluorescence. DATA 2023. [DOI: 10.3390/data8020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
In recent years, there has been an increased effort to digitise whole-slide images of cancer tissue. This effort has opened up a range of new avenues for the application of deep learning in oncology. One such avenue is virtual staining, where a deep learning model is tasked with reproducing the appearance of stained tissue sections, conditioned on a different, often times less expensive, input stain. However, data to train such models in a supervised manner where the input and output stains are aligned on the same tissue sections are scarce. In this work, we introduce a dataset of ten whole-slide images of clear cell renal cell carcinoma tissue sections counterstained with Hoechst 33342, CD3, and CD8 using multiple immunofluorescence. We also provide a set of over 600,000 patches of size 256 × 256 pixels extracted from these images together with cell segmentation masks in a format amenable to training deep learning models. It is our hope that this dataset will be used to further the development of deep learning methods for digital pathology by serving as a dataset for comparing and benchmarking virtual staining models.
Collapse
|
25
|
Du Q, Liu W, Mei T, Wang J, Qin T, Huang D. Prognostic and immunological characteristics of CDK1 in lung adenocarcinoma: A systematic analysis. Front Oncol 2023; 13:1128443. [PMID: 36950551 PMCID: PMC10025485 DOI: 10.3389/fonc.2023.1128443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/27/2023] [Indexed: 03/08/2023] Open
Abstract
Background Cyclin-dependent kinases (CDKs) play a key role in cell proliferation in lung adenocarcinoma (LUAD). Comprehensive analysis of CDKs to elucidate their clinical significance and interactions with the tumor immune microenvironment is needed. Methods RNA expression, somatic mutation, copy number variation, and single-cell RNA sequencing data were downloaded from public datasets. First, we comprehensively evaluated the expression profile and prognostic characteristics of 26 CDKs in LUAD, and CDK1 was selected as a candidate for further analysis. Then, a systematic analysis was performed to explore the relationships of CDK1 with clinical characteristics and tumor immune microenvironment factors in LUAD. Results CDK1 was markedly upregulated at both the mRNA and protein level in LUAD. Moreover, overexpression of CDK1 was related to poor clinical outcomes. CDK1 coexpressed genes were mainly involved in the cell cycle, the DNA repair process, and the p53 signaling pathway. In addition, CDK1 expression was found to be correlated with the expression of multiple immunomodulators and chemokines, which participate in activating and suppressing the immune microenvironment. CDK1 expression was also correlated with increased infiltration of numerous immune cells, including CD4+ T cells and M1 macrophages. Patients with high CDK1 expression tended to have a poor response to immunotherapy but were sensitive to multiple chemotherapies and targeted drugs. The MDK-NCL and SPP1-CD44 ligand-receptor pairs were markedly activated in the intercellular communication network. CDK1 was an independent prognostic factor for LUAD and improved the ability to predict overall survival when combined with tumor stage. Conclusion CDK1 plays an essential role in reshaping the tumor immune microenvironment and might be a prognostic and treatment biomarker in LUAD.
Collapse
|
26
|
Sandarenu P, Millar EKA, Song Y, Browne L, Beretov J, Lynch J, Graham PH, Jonnagaddala J, Hawkins N, Huang J, Meijering E. Survival prediction in triple negative breast cancer using multiple instance learning of histopathological images. Sci Rep 2022; 12:14527. [PMID: 36008541 PMCID: PMC9411153 DOI: 10.1038/s41598-022-18647-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
Computational pathology is a rapidly expanding area for research due to the current global transformation of histopathology through the adoption of digital workflows. Survival prediction of breast cancer patients is an important task that currently depends on histopathology assessment of cancer morphological features, immunohistochemical biomarker expression and patient clinical findings. To facilitate the manual process of survival risk prediction, we developed a computational pathology framework for survival prediction using digitally scanned haematoxylin and eosin-stained tissue microarray images of clinically aggressive triple negative breast cancer. Our results show that the model can produce an average concordance index of 0.616. Our model predictions are analysed for independent prognostic significance in univariate analysis (hazard ratio = 3.12, 95% confidence interval [1.69,5.75], p < 0.005) and multivariate analysis using clinicopathological data (hazard ratio = 2.68, 95% confidence interval [1.44,4.99], p < 0.005). Through qualitative analysis of heatmaps generated from our model, an expert pathologist is able to associate tissue features highlighted in the attention heatmaps of high-risk predictions with morphological features associated with more aggressive behaviour such as low levels of tumour infiltrating lymphocytes, stroma rich tissues and high-grade invasive carcinoma, providing explainability of our method for triple negative breast cancer.
Collapse
Affiliation(s)
- Piumi Sandarenu
- School of Computer Science and Engineering, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Ewan K A Millar
- Department of Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW, 2217, Australia.,St. George and Sutherland Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia.,Faculty of Medicine and Health Sciences, Sydney Western University, Campbelltown, NSW, 2560, Australia.,University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Yang Song
- School of Computer Science and Engineering, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Lois Browne
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Julia Beretov
- Department of Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW, 2217, Australia.,St. George and Sutherland Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia.,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Jodi Lynch
- St. George and Sutherland Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia.,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Peter H Graham
- St. George and Sutherland Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia.,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | | | - Nicholas Hawkins
- School of Medical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Junzhou Huang
- University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Erik Meijering
- School of Computer Science and Engineering, UNSW Sydney, Kensington, NSW, 2052, Australia.
| |
Collapse
|
27
|
Quantifying Spatial Heterogeneity of Tumor-Infiltrating Lymphocytes to Predict Survival of Individual Cancer Patients. J Pers Med 2022; 12:jpm12071113. [PMID: 35887610 PMCID: PMC9317291 DOI: 10.3390/jpm12071113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs), identified on HE-stained histopathological images in the cancer area, are indicators of the adaptive immune response against cancers and play a major role in personalized cancer immunotherapy. Recent works indicate that the spatial organization of TILs may be prognostic of disease-specific survival and recurrence. However, there are a limited number of methods that were proposed and tested in analyses of the spatial structure of TILs. In this work, we evaluated 14 different spatial measures, including the one developed for other omics data, on 10,532 TIL maps from 23 cancer types in terms of reproducibility, uniqueness, and impact on patient survival. For each spatial measure, 16 different scenarios for the definition of prognostic factor were tested. We found no difference in survival prediction when TIL maps were stored as binary images or continuous TIL probability scores. When spatial measures were discretized into a low and high category, a higher correlation with survival was observed. Three measures with the highest cancer prognosis capability were spatial autocorrelation, GLCM M1, and closeness centrality. Most of the tested measures could be further tuned to increase prediction performance.
Collapse
|
28
|
Fassler DJ, Torre-Healy LA, Gupta R, Hamilton AM, Kobayashi S, Van Alsten SC, Zhang Y, Kurc T, Moffitt RA, Troester MA, Hoadley KA, Saltz J. Spatial Characterization of Tumor-Infiltrating Lymphocytes and Breast Cancer Progression. Cancers (Basel) 2022; 14:2148. [PMID: 35565277 PMCID: PMC9105398 DOI: 10.3390/cancers14092148] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) have been established as a robust prognostic biomarker in breast cancer, with emerging utility in predicting treatment response in the adjuvant and neoadjuvant settings. In this study, the role of TILs in predicting overall survival and progression-free interval was evaluated in two independent cohorts of breast cancer from the Cancer Genome Atlas (TCGA BRCA) and the Carolina Breast Cancer Study (UNC CBCS). We utilized machine learning and computer vision algorithms to characterize TIL infiltrates in digital whole-slide images (WSIs) of breast cancer stained with hematoxylin and eosin (H&E). Multiple parameters were used to characterize the global abundance and spatial features of TIL infiltrates. Univariate and multivariate analyses show that large aggregates of peritumoral and intratumoral TILs (forests) were associated with longer survival, whereas the absence of intratumoral TILs (deserts) is associated with increased risk of recurrence. Patients with two or more high-risk spatial features were associated with significantly shorter progression-free interval (PFI). This study demonstrates the practical utility of Pathomics in evaluating the clinical significance of the abundance and spatial patterns of distribution of TIL infiltrates as important biomarkers in breast cancer.
Collapse
Affiliation(s)
- Danielle J. Fassler
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11790, USA; (D.J.F.); (L.A.T.-H.); (R.G.); (S.K.); (Y.Z.); (T.K.); (R.A.M.)
| | - Luke A. Torre-Healy
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11790, USA; (D.J.F.); (L.A.T.-H.); (R.G.); (S.K.); (Y.Z.); (T.K.); (R.A.M.)
| | - Rajarsi Gupta
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11790, USA; (D.J.F.); (L.A.T.-H.); (R.G.); (S.K.); (Y.Z.); (T.K.); (R.A.M.)
| | - Alina M. Hamilton
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.M.H.); (S.C.V.A.); (M.A.T.)
| | - Soma Kobayashi
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11790, USA; (D.J.F.); (L.A.T.-H.); (R.G.); (S.K.); (Y.Z.); (T.K.); (R.A.M.)
| | - Sarah C. Van Alsten
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.M.H.); (S.C.V.A.); (M.A.T.)
| | - Yuwei Zhang
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11790, USA; (D.J.F.); (L.A.T.-H.); (R.G.); (S.K.); (Y.Z.); (T.K.); (R.A.M.)
| | - Tahsin Kurc
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11790, USA; (D.J.F.); (L.A.T.-H.); (R.G.); (S.K.); (Y.Z.); (T.K.); (R.A.M.)
| | - Richard A. Moffitt
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11790, USA; (D.J.F.); (L.A.T.-H.); (R.G.); (S.K.); (Y.Z.); (T.K.); (R.A.M.)
| | - Melissa A. Troester
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.M.H.); (S.C.V.A.); (M.A.T.)
| | - Katherine A. Hoadley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Joel Saltz
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11790, USA; (D.J.F.); (L.A.T.-H.); (R.G.); (S.K.); (Y.Z.); (T.K.); (R.A.M.)
| |
Collapse
|