1
|
Demir O, Saglam KA, Yilmaz M, Apuhan T, Cebi AH, Turkyilmaz A. Secondary findings in genes related to cancer phenotypes in Turkish exome sequencing data from 2020 individuals. Am J Med Genet A 2024; 194:e63806. [PMID: 38940262 DOI: 10.1002/ajmg.a.63806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Big data generated from exome sequencing (ES) and genome sequencing (GS) analyses can be used to detect actionable and high-penetrance variants that are not directly associated with the primary diagnosis of patients but can guide their clinical follow-up and treatment. Variants that are classified as pathogenic/likely pathogenic and are clinically significant but not directly associated with the primary diagnosis of patients are defined as secondary findings (SF). The aim of this study was to examine the frequency and variant spectrum of cancer-related SF in 2020 Turkish ES data and to discuss the importance of the presence of cancer-related SF in at-risk family members in terms of genetic counseling and follow-up. A total of 2020 patients from 2020 different families were evaluated by ES. SF were detected in 28 unrelated cases (1.38%), and variants in BRCA2 (11 patients) and MLH1 (4 patients) genes were observed most frequently. A total of 21 different variants were identified, with 4 of them (c.9919_9932del and c.3653del in the BRCA2 gene, c.2002A>G in the MSH2 gene, c.26_29del in the TMEM127 gene) being novel variations. In three different families, c.1189C>T (p.Gln397*) variation in BRCA2 gene was detected, suggesting that this may be a common variant in the Turkish population. This study represents the largest cohort conducted in the Turkish population, examining the frequency and variant spectrum of cancer-related SF. With the identification of frequent variations and the detection of novel variations, the findings of this study have contributed to the variant spectrum. Genetic testing conducted in family members is presented as real-life data, showcasing the implications in terms of counseling, monitoring, and treatment through case examples.
Collapse
Affiliation(s)
- Oguzhan Demir
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Kubra Adanur Saglam
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mustafa Yilmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Tuna Apuhan
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Alper Han Cebi
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
2
|
Kwong A, Ho CYS, Leung HCM, Leung AWS, Au CH, Ma ESK. Mutation Spectrum Comparison between Benign Breast Lesion Cohort, Unselected Cancer Cohort and High-Risk Breast Cancer Cohort. Cancers (Basel) 2024; 16:3066. [PMID: 39272924 PMCID: PMC11393947 DOI: 10.3390/cancers16173066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Mutation study for high-risk breast and ovarian cancer (HBOC) has been extensively studied in patients of different ethnicities. Here we compared the germline mutation rate and mutation spectrum of patients (n = 4341) with benign breast diseases or breast cancers, with and without other risk factors. Three cohorts of Chinese patients were recruited. The first cohort, high-risk cohort (HR, n = 3935) included high-risk breast cancer patients fulfilling high-risk HBOC criteria and who are recruited at our genetics clinic. The second cohort, unselected cancer cohort (CC, n = 307) was from general recruitment of patients with breast cancer at breast surgery clinics. The third cohort, benign breast lesion cohort (NC, n = 99) comprised 99 patients with benign breast diseases such as fibroadenoma, fibroadenomatoid hyperplasia, and intraductal papilloma. Thirty HBOC related genes were sequenced on the above-mentioned patient cohorts. The germline mutation rates of HR, CC, and NC cohort were 11.9%, 6.5%, and 8.1%, respectively. In the CC cohort, 29.3% (90/307) of patients fulfilled the National Comprehensive Cancer Network (NCCN) high-risk genetic test criteria 2022 v.2. The mutation rate for this group of patients was 11.1%, similar to that of the HR cohort, while the mutation rate for those not fulfilling testing criteria was 4.6%, like that of the NC cohort. High penetrance genes (BRCA1/2, CDH1, PALB2, PTEN, and TP53) mutations were only found in the HR (10.6%) and CC (3.3%) cohorts but were not found in the NC cohort. ATM, BRIP1, RAD51C, and RAD51D mutations were identified in all cohorts. RAD51C and RAD51D mutations showed conflicting penetrance. An unexpectedly high mutation rate of total 2% was found in the NC cohort but it was only 0.3% and 0.5% in the HR cohort and CC cohort, respectively. Our results show a clinical need to enhance genetic testing of unselected breast cancer patients to identify the high-risk patients.
Collapse
Affiliation(s)
- Ava Kwong
- Division of Breast Surgery, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China
- Cancer Genetics Centre, Breast Surgery Centre, Surgery Centre, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Cecilia Y S Ho
- Department of Pathology, Division of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Henry C M Leung
- Department of Pathology, Division of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Amy W S Leung
- Department of Pathology, Division of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Chun-Hang Au
- Department of Pathology, Division of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Edmond S K Ma
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China
- Department of Pathology, Division of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| |
Collapse
|
3
|
Shao B, Di L. Metastatic breast cancer with double heterozygosity for the BRCA1 and BRCA2 genes responding to olaparib: A case report. Oncol Lett 2024; 27:253. [PMID: 38646498 PMCID: PMC11027096 DOI: 10.3892/ol.2024.14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/07/2023] [Indexed: 04/23/2024] Open
Abstract
Olaparib was the first poly ADP-ribose polymerase inhibitor approved for patients with cancer with mutations in either BRCA1 or BRCA2 in China. To the best of our knowledge, however, no study has described the efficacy of olaparib for patients with breast cancer with double mutations in BRCA1 and BRCA2. The present case report describes a patient with breast cancer with deleterious germline mutations in both BRCA1 and BRCA2. The 56-year-old patient with multiple metastatic breast cancer underwent breast cancer resection with 12 years interval between removal of the left and right breast. Germline mutations in both BRCA1 (S405X) and BRCA2 (W2990X) were identified by NGS. She received two cycles of chemotherapy with a combination of albumin-bound paclitaxel and capecitabine; the response was progressive disease. Subsequently, the patient was treated with a gradual dosage of decreasing olaparib (600 to 300 mg BID) for 6 months until grade 3 anemia could not be alleviated by giving erythropoietin and iron, and CT imaging showed a partial response (35% reduction). The patient then switched to exemestane therapy due to the continuous grade 3 anemia. In conclusion, the present study reported a female patient with double heterozygosity of BRCA1 and BRCA2 who benefited from olaparib monotherapy. Thus, olaparib may be a suitable treatment for such patients.
Collapse
Affiliation(s)
- Bin Shao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Lijun Di
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| |
Collapse
|
4
|
Wu Z, Zhang Q, Jin Y, Zhang X, Chen Y, Yang C, Tang X, Jiang H, Wang X, Zhou X, Yu F, Wang B, Guan M. Population-based BRCA germline mutation screening in the Han Chinese identifies individuals at risk of BRCA mutation-related cancer: experience from a clinical diagnostic center from greater Shanghai area. BMC Cancer 2024; 24:411. [PMID: 38566028 PMCID: PMC10988807 DOI: 10.1186/s12885-024-12089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Deleterious BRCA1/2 (BRCA) mutation raises the risk for BRCA mutation-related malignancies, including breast, ovarian, prostate, and pancreatic cancer. Germline variation of BRCA exhibits substantial ethnical diversity. However, there is limited research on the Chinese Han population, constraining the development of strategies for BRCA mutation screening in this large ethnic group. METHODS We profile the BRCA mutational spectrum, including single nucleotide variation, insertion/deletion, and large genomic rearrangements in 2,080 apparently healthy Chinese Han individuals and 522 patients with BRCA mutation-related cancer, to determine the BRCA genetic background of the Chinese Han population, especially of the East Han. Incident cancer events were monitored in 1,005 participants from the healthy group, comprising 11 BRCA pathogenic/likely pathogenic (PLP) variant carriers and 994 PLP-free individuals, including 3 LGR carriers. RESULTS Healthy Chinese Han individuals demonstrated a distinct BRCA mutational spectrum compared to cancer patients, with a 0.53% (1 in 189) prevalence of pathogenic/likely pathogenic (PLP) variant, alongside a 3 in 2,080 occurrence of LGR. BRCA1 c. 5470_5477del demonstrated high prevalence (0.44%) in the North Han Chinese and penetrance for breast cancer. None of the 3 LGR carriers developed cancer during the follow-up. We calculated a relative risk of 135.55 (95% CI 25.07 to 732.88) for the development of BRCA mutation-related cancers in the BRCA PLP variant carriers (mean age 42.91 years, median follow-up 10 months) compared to PLP-free individuals (mean age 48.47 years, median follow-up 16 months). CONCLUSION The unique BRCA mutational profile in the Chinese Han highlights the potential for standardized population-based BRCA variant screening to enhance BRCA mutation-related cancer prevention and treatment.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Qingyun Zhang
- Central Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Yiting Jin
- Department of General Surgery, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Xinju Zhang
- Central Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Yanli Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Can Yang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Xuemei Tang
- Central Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Xiaoyi Wang
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Xinli Zhou
- Department of Oncology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Feng Yu
- Health Management Center, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Bing Wang
- Health Management Center, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 200040, Shanghai, China.
- Central Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| |
Collapse
|
5
|
Liu Y, Zheng J, Xu Y, Lv J, Wu Z, Feng K, Liu J, Yan W, Wei L, Zhao J, Jiang L, Han M. Multigene testing panels reveal pathogenic variants in sporadic breast cancer patients in northern China. Front Genet 2023; 14:1271710. [PMID: 38028594 PMCID: PMC10666181 DOI: 10.3389/fgene.2023.1271710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Breast cancer, the most prevalent malignancy in women worldwide, presents diverse onset patterns and genetic backgrounds. This study aims to examine the genetic landscape and clinical implications of rare mutations in Chinese breast cancer patients. Methods: Clinical data from 253 patients, including sporadic and familial cases, were analyzed. Comprehensive genomic profiling was performed, categorizing identified rare variants according to the American College of Medical Genetics (ACMG) guidelines. In silico protein modeling was used to analyze potentially pathogenic variants' impact on protein structure and function. Results: We detected 421 rare variants across patients. The most frequently mutated genes were ALK (22.2%), BARD1 (15.6%), and BRCA2 (15.0%). ACMG classification identified 7% of patients harboring Pathogenic/Likely Pathogenic (P/LP) variants, with one case displaying a pathogenic BRCA1 mutation linked to triple-negative breast cancer (TNBC). Also identified were two pathogenic MUTYH variants, previously associated with colon cancer but increasingly implicated in breast cancer. Variants of uncertain significance (VUS) were identified in 112 patients, with PTEN c.C804A showing the highest frequency. The role of these variants in sporadic breast cancer oncogenesis was suggested. In-depth exploration of previously unreported variants led to the identification of three potential pathogenic variants: ATM c.C8573T, MSH3 c.A2723T, and CDKN1C c.C221T. Their predicted impact on protein structure and stability suggests a functional role in cancer development. Conclusion: This study reveals a comprehensive overview of the genetic variants landscape in Chinese breast cancer patients, highlighting the prevalence and potential implications of rare variants. We emphasize the value of comprehensive genomic profiling in breast cancer management and the necessity of continuous research into understanding the functional impacts of these variants.
Collapse
Affiliation(s)
- Yinfeng Liu
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Jie Zheng
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Yue Xu
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China
| | - Ji Lv
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Zizheng Wu
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Kai Feng
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Jiani Liu
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Weitao Yan
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Liguang Wei
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Jiangman Zhao
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China
| | - Lisha Jiang
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China
| | - Meng Han
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| |
Collapse
|