1
|
Arumugam S, Sidhom M. Robust Optimization for Prostate Radiation Therapy: Assessment of Delivered Dose by Incorporating Intrafraction Prostate Position Deviations. Adv Radiat Oncol 2024; 9:101455. [PMID: 38596454 PMCID: PMC11002539 DOI: 10.1016/j.adro.2024.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/18/2024] [Indexed: 04/11/2024] Open
Abstract
Purpose To assess the robustness of the dose delivered to the clinical target volume (CTV) between planning target volume (PTV)-based and robust optimization planning approaches in localized prostate cancer radiation therapy. Methods and Materials Retrospective data of 20 patients with prostate cancer, including radiation therapy and real-time prostate position, were analyzed. Two sets of volumetric modulated arc therapy plans were generated per patient: PTV-based and robust optimization. PTV-based planning used a 7-mm CTV-PTV margin, whereas robust planning considered same-magnitude position deviations. Differences in CTV dose delivered to 99% volume (D99), PTV dose delivered to 95% volume (D95), and bladder and rectum V40 (volume receiving 40 Gy) and V60 (volume receiving 60 Gy) values were evaluated. The target position, determined by in-house position monitoring system, was incorporated for dose assessment with and without position deviation correction. Results In the robust optimization approach, compared with PTV-based planning, the mean (standard deviation) V40 and V60 values of the bladder were reduced by 5.2% (4.1%) and 5.1% (1.9%), respectively. Similarly, for the rectum, the reductions were 0.8% (0.5%) and 0.6% (0.6%). In corrected treatment scenarios, both planning approaches resulted in a mean (standard deviation) CTV D99 difference of 0.1 Gy (0.1 Gy). In the not corrected scenario, PTV-based planning reduced CTV D99 by 0.1 Gy (0.5 Gy), whereas robust planning reduced it by 0.2 Gy (0.6 Gy). There was no statistically significant difference observed in the planned and delivered rectum and bladder dose for both corrected and not corrected scenarios. Conclusions Robust optimization resulted in lower V40 and V60 values for the bladder compared with PTV-based planning. However, no difference in CTV dose accuracy was found between the 2 approaches.
Collapse
Affiliation(s)
- Sankar Arumugam
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, New South Wales, Australia
- South Western Sydney, Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark Sidhom
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, New South Wales, Australia
| |
Collapse
|
2
|
Young T, Lee M, Johnston M, Nguyen T, Ko R, Arumugam S. Assessment of interfraction dose variation in pancreas SBRT using daily simulation MR images. Phys Eng Sci Med 2023; 46:1619-1627. [PMID: 37747645 DOI: 10.1007/s13246-023-01324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
Pancreatic Cancer is associated with poor treatment outcomes compared to other cancers. High local control rates have been achieved by using hypofractionated stereotactic body radiotherapy (SBRT) to treat pancreatic cancer. Challenges in delivering SBRT include close proximity of several organs at risk (OARs) and target volume inter and intra fraction positional variations. Magnetic resonance image (MRI) guided radiotherapy has shown potential for online adaptive radiotherapy for pancreatic cancer, with superior soft tissue contrast compared to CT. The aim of this study was to investigate the variability of target and OAR volumes for different treatment approaches for pancreatic cancer, and to assess the suitability of utilizing a treatment-day MRI for treatment planning purposes. Ten healthy volunteers were scanned on a Siemens Skyra 3 T MRI scanner over two sessions (approximately 3 h apart), per day over 5 days to simulate an SBRT daily simulation scan for treatment planning. A pretreatment scan was also done to simulate patient setup and treatment. A 4D MRI scan was taken at each session for internal target volume (ITV) generation and assessment. For each volunteer a treatment plan was generated in the Raystation treatment planning system (TPS) following departmental protocols on the day one, first session dataset (D1S1), with bulk density overrides applied to enable dose calculation. This treatment plan was propagated through other imaging sessions, and the dose calculated. An additional treatment plan was generated on each first session of each day (S1) to simulate a daily replan process, with this plan propagated to the second session of the day. These accumulated mock treatment doses were assessed against the original treatment plan through DVH comparison of the PTV and OAR volumes. The generated ITV showed large variations when compared to both the first session ITV and daily ITV, with an average magnitude of 22.44% ± 13.28% and 25.83% ± 37.48% respectively. The PTV D95 was reduced by approximately 23.3% for both plan comparisons considered. Surrounding OARs had large variations in dose, with the small bowel V30 increasing by 128.87% when compared to the D1S1 plan, and 43.11% when compared to each daily S1 plan. Daily online adaptive radiotherapy is required for accurate dose delivery for pancreas cancer in the absence of additional motion management and tumour tracking techniques.
Collapse
Affiliation(s)
- Tony Young
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia.
- Ingham Institute, Sydney, Australia.
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, Australia.
| | - Mark Lee
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
| | | | - Theresa Nguyen
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
| | - Rebecca Ko
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
| | - Sankar Arumugam
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
- Ingham Institute, Sydney, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|
3
|
Arumugam S, Young T, Do V, Chlap P, Tawfik C, Udovitch M, Wong K, Sidhom M. Assessment of intrafraction motion and its dosimetric impact on prostate radiotherapy using an in-house developed position monitoring system. Front Oncol 2023; 13:1082391. [PMID: 37519787 PMCID: PMC10375704 DOI: 10.3389/fonc.2023.1082391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose To implement an in-house developed position monitoring software, SeedTracker, for conventional fractionation prostate radiotherapy, and study the effect on dosimetric impact and intrafraction motion. Methods Thirty definitive prostate radiotherapy patients with implanted fiducial markers were included in the study. All patients were treated with VMAT technique and plans were generated using the Pinnacle planning system using the 6MV beam model for Elekta linear accelerator. The target dose of 60 Gy in 20 fractions was prescribed for 29 of 30 patients, and one patient was treated with the target dose of 78 Gy in 39 fractions. The SeedTracker position monitoring system, which uses the x-ray images acquired during treatment delivery in the Elekta linear accelerator and associated XVI system, was used for online prostate position monitoring. The position tolerance for online verification was progressively reduced from 5 mm, 4 mm, and to 3 mm in 10 patient cohorts to effectively manage the treatment interruptions resulting from intrafraction motion in routine clinical practice. The delivered dose to target volumes and organs at risk in each of the treatment fractions was assessed by incorporating the observed target positions into the original treatment plan. Results In 27 of 30 patients, at least one gating event was observed, with a total of 177 occurrences of position deviation detected in 146 of 619 treatment fractions. In 5 mm, 4 mm, and 3 mm position tolerance cohorts, the position deviations were observed in 13%, 24%, and 33% of treatment fractions, respectively. Overall, the mean (range) deviation of -0.4 (-7.2 to 5.3) mm, -0.9 (-6.1 to 15.6) mm, and -1.7 (-7.0 to 6.1) mm was observed in Left-Right, Anterior-Posterior, and Superior-Inferior directions, respectively. The prostate CTV D99 would have been reduced by a maximum value of 1.3 Gy compared to the planned dose if position deviations were uncorrected, but with corrections, it was 0.3 Gy. Similarly, PTV D98 would have been reduced by a maximum value of 7.6 Gy uncorrected, with this difference reduced to 2.2 Gy with correction. The V60 to the rectum increased by a maximum of 1.0% uncorrected, which was reduced to 0.5%. Conclusion Online target position monitoring for conventional fractionation prostate radiotherapy was successfully implemented on a standard Linear accelerator using an in-house developed position monitoring software, with an improvement in resultant dose to prostate target volume.
Collapse
Affiliation(s)
- Sankar Arumugam
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW, Australia
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Tony Young
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW, Australia
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Viet Do
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| | - Phillip Chlap
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW, Australia
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Christine Tawfik
- Department of Radiation Therapy, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| | - Mark Udovitch
- Department of Radiation Therapy, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| | - Karen Wong
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| | - Mark Sidhom
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| |
Collapse
|
4
|
Arumugam S, Wong K, Do V, Sidhom M. Reducing the margin in prostate radiotherapy: optimizing radiotherapy with a general-purpose linear accelerator using an in-house position monitoring system. Front Oncol 2023; 13:1116999. [PMID: 37519807 PMCID: PMC10373585 DOI: 10.3389/fonc.2023.1116999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose To study the feasibility of optimizing the Clinical Target Volume to Planning Target Volume (CTV-PTV) margin in prostate radiotherapy(RT) with a general-purpose linear accelerator using an in-house developed position monitoring system, SeedTracker. Methods A cohort of 30 patients having definitive prostate radiotherapy treated within an ethics-approved prospective trial was considered for this study. The intrafraction prostate motion and the position deviations were measured using SeedTracker system during each treatment fraction. Using this data the CTV-PTV margin required to cover 90% of the patients with a minimum of 95% of the prescription dose to CTV was calculated using van Herk's formula. The margin calculations were performed for treatment scenarios both with and without applying the position corrections for observed position deviations. The feasibility of margin reduction with real-time monitoring was studied by assessing the delivered dose that incorporates the actual target position during treatment delivery and comparing it with the planned dose. This assessment was performed for plans generated with reduced CTV-PTV margin in the range of 7mm-3mm. Results With real-time monitoring and position corrections applied the margin of 2.0mm, 2.1mm and 2.1mm in LR, AP and SI directions were required to meet the criteria of 90% population to receive 95% of the dose prescription to CTV. Without position corrections applied for observed position deviations a margin of 3.1mm, 4.0mm and 3.0mm was required in LR, AP and SI directions to meet the same criteria. A mean ± SD reduction of 0.5 ± 1.8% and 3 ± 7% of V60 for the rectum and bladder can be achieved for every 1mm reduction of PTV margin. With position corrections applied, the CTV D99 can be delivered within -0.2 ± 0.3 Gy of the planned dose for plans with a 3mm margin. Without applying corrections for position deviations the CTV D99 was reduced by a maximum of 1.1 ± 1.1 Gy for the 3mm margin plan and there was a statistically significant difference between planned and delivered dose for 3mm and 4mm margin plans. Conclusion This study demonstrates the feasibility of reducing the margin in prostate radiotherapy with SeedTracker system without compromising the dose delivery accuracy to CTV while reducing dose to critical structures.
Collapse
Affiliation(s)
- Sankar Arumugam
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW, Australia
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Karen Wong
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| | - Viet Do
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| | - Mark Sidhom
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| |
Collapse
|