1
|
Bao K, Silbereisen A, Grossmann J, Nanni P, Gehrig P, Emingil G, Erguz M, Karapinar DY, Pekpinarli B, Belibasakis GN, Tsilingaridis G, Zaura E, Bostanci N. Protein Network Alterations in G-CSF Treated Severe Congenital Neutropenia Patients and Beneficial Effects of Oral Health Intervention. Proteomics Clin Appl 2024:e202400064. [PMID: 39096313 DOI: 10.1002/prca.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024]
Abstract
PURPOSE Severe congenital neutropenia (SCN) is a raredisorder characterized by diminished neutrophil levels. Despite granulocytecolony-stimulating factor (G-CSF) treatment, SCN patients remain still prone tosevere infections, including periodontal disease-a significant oral healthrisk. This study investigates the host proteome and metaproteome in saliva andgingival crevicular fluid (GCF) of G-CSF-treated patients. EXPERIMENTAL DESIGN We used label-free quantitative proteomics on saliva and GCF samples from SCN patients before (n = 10, mean age: 10.7 ± 6.6 years) and after a 6-month oral hygiene intervention (n = 9,mean age: 11.6 ± 5.27 years), and from 12 healthy controls. RESULTS We quantified 894 proteins in saliva (648 human,246 bacterial) and 756 proteins in GCF (493 human, 263 bacterial). Predominant bacterial genera included Streptococcus, Veillonella, Selenomonas, Corynebacterium, Porphyromonas, and Prevotella. SCN patients showed reduced antimicrobial peptides (AMPs) and elevated complement proteins compared tohealthy controls. Oral hygiene intervention improved oral epithelial conditionsand reduced both AMPs and complement proteins. CONCLUSIONS AND CLINICAL RELEVANCE SCN patients have aunique proteomic profile with reduced AMPs and increased complement proteins, contributing to infection susceptibility. Oral hygiene intervention not onlyimproved oral health in SCN patients but also offers potential overall therapeuticbenefits.
Collapse
Affiliation(s)
- Kai Bao
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Angelika Silbereisen
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Jonas Grossmann
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB) Quartier Sorge-Batiment Amphipole, Lausanne, Switzerland
| | - Paolo Nanni
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Peter Gehrig
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Gülnur Emingil
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| | - Merve Erguz
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| | | | - Burç Pekpinarli
- Department of Pediatrics, School of Dentistry, Ege University, İzmir, Turkey
| | - Georgios N Belibasakis
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Georgios Tsilingaridis
- Division of Pediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
2
|
Ballesteros-Ribelles A, Millán-López A, Carmona-Luque MD, Herrera C. Granulocyte Colony Stimulating Factor-Mobilized Peripheral Blood Mononuclear Cells: An Alternative Cellular Source for Chimeric Antigen Receptor Therapy. Int J Mol Sci 2024; 25:5769. [PMID: 38891957 PMCID: PMC11171785 DOI: 10.3390/ijms25115769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Lymphocyte collection by apheresis for CAR-T production usually does not include blood mobilized using granulocyte colony stimulating factor (G-CSF) due to the widespread knowledge that it causes a decrease in the number and functionality of lymphocytes. However, it is used for stem cell transplant, which is a common treatment for hematological malignancies. The growing demand for CAR therapies (CAR-T and NK-CAR), both in research and clinics, makes it necessary to evaluate whether mobilized PBSC products may be potential candidates for use in such therapies. This review collects recent works that experimentally verify the role and functionality of T and NK lymphocytes and the generation of CAR-T from apheresis after G-CSF mobilization. As discussed, T cells do not vary significantly in their phenotype, the ratio of CD4+ and CD8+ remains constant, and the different sub-populations remain stable. In addition, the expansion and proliferation rates are invariant regardless of mobilization with G-CSF as well as the secretion of proinflammatory cytokines and the cytotoxic ability. Therefore, cells mobilized before apheresis are postulated as a new alternative source of T cells for adoptive therapies that will serve to alleviate high demand, increase availability, and take advantage of the substantial number of existing cryopreserved products.
Collapse
Affiliation(s)
| | - Alejandro Millán-López
- Cell Therapy Group, Maimonides Institute for Biomedical Research, 14004 Córdoba, Spain; (A.B.-R.); (A.M.-L.)
| | - MDolores Carmona-Luque
- Cell Therapy Group, Maimonides Institute for Biomedical Research, 14004 Córdoba, Spain; (A.B.-R.); (A.M.-L.)
| | - Concha Herrera
- Cell Therapy Group, Maimonides Institute for Biomedical Research, 14004 Córdoba, Spain; (A.B.-R.); (A.M.-L.)
- Department of Hematology, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Department of Medical and Surgical Sciences, University of Córdoba, 14004 Córdoba, Spain
| |
Collapse
|
3
|
Sussman C, Liberatore RA, Drozdz MM. Delivery of DNA-Based Therapeutics for Treatment of Chronic Diseases. Pharmaceutics 2024; 16:535. [PMID: 38675196 PMCID: PMC11053842 DOI: 10.3390/pharmaceutics16040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Gene therapy and its role in the medical field have evolved drastically in recent decades. Studies aim to define DNA-based medicine as well as encourage innovation and the further development of novel approaches. Gene therapy has been established as an alternative approach to treat a variety of diseases. Its range of mechanistic applicability is wide; gene therapy has the capacity to address the symptoms of disease, the body's ability to fight disease, and in some cases has the ability to cure disease, making it a more attractive intervention than some traditional approaches to treatment (i.e., medicine and surgery). Such versatility also suggests gene therapy has the potential to address a greater number of indications than conventional treatments. Many DNA-based therapies have shown promise in clinical trials, and several have been approved for use in humans. Whereas current treatment regimens for chronic disease often require frequent dosing, DNA-based therapies can produce robust and durable expression of therapeutic genes with fewer treatments. This benefit encourages the application of DNA-based gene therapy to manage chronic diseases, an area where improving efficiency of current treatments is urgent. Here, we provide an overview of two DNA-based gene therapies as well as their delivery methods: adeno associated virus (AAV)-based gene therapy and plasmid DNA (pDNA)-based gene therapy. We will focus on how these therapies have already been utilized to improve treatment of chronic disease, as well as how current literature supports the expansion of these therapies to treat additional chronic indications in the future.
Collapse
|
4
|
Glaspy J, Bondarenko I, Burdaeva O, Chen J, Rutty D, Li R, Wang S, Hou Q, Li S. Efbemalenograstim alfa, an Fc fusion protein, long-acting granulocyte-colony stimulating factor for reducing the risk of febrile neutropenia following chemotherapy: results of a phase III trial. Support Care Cancer 2023; 32:34. [PMID: 38103088 PMCID: PMC10725375 DOI: 10.1007/s00520-023-08176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE Evaluate the safety and efficacy of efbemalenograstim alfa for reducing the risk of febrile neutropenia in breast cancer patients undergoing myelosuppressive chemotherapy. METHODS A phase III, randomized, double-blind, placebo-controlled study was conducted. A total of 122 subjects received up to 4 cycles of TA chemotherapy (75 mg/m2 docetaxel + 60 mg/m2 doxorubicin). Patients were randomized in a 2:1 ratio to subcutaneously inject a single 20 mg of efbemalenograstim alfa or placebo on day 2 of cycle 1, and all subjects received efbemalenograstim alfa on day 2 of cycles 2, 3, and 4. Duration of severe (grade 4) neutropenia (DSN), depth of neutrophil nadir, incidence of febrile neutropenia (FN), time to neutrophil recovery, and safety information were recorded. RESULTS For the primary endpoint, the mean DSN in cycle 1 was 1.3 days and 3.9 days for efbemalenograstim alfa and placebo respectively (95% CI, 2.3, 3.4). As the lower bound of the 95% CI was > 0, superiority of efbemalenograstim alfa over placebo can be declared. In addition, the incidence of FN in Cycle 1 was lower in efbemalenograstim alfa group than in placebo group (4.8% vs. 25.6%; p = 0.0016). Patients in the efbemalenograstim alfa group required less intravenous antibiotics (3.6% vs. 17.9%; p = 0.0119). Most adverse events were consistent with those expected for breast cancer patient receiving TA chemotherapy. CONCLUSION Efbemalenograstim alfa is effective and safe for significantly decreasing the duration of severe neutropenia and the incidence of febrile neutropenia in breast cancer patients who are receiving TA chemotherapy. TRIAL REGISTRATION NCT02872103, August 19, 2016.
Collapse
Affiliation(s)
- John Glaspy
- UCLA School of Medicine, UCLA Medical Plaza, 100Suite 550, Los Angeles, CA, 90095-6956, USA.
| | - Igor Bondarenko
- Oncology and Medical Radiology Dept, Dnepropetrovsk Medical Academy, Dnepropetrovsk, Ukraine
| | - Olga Burdaeva
- Arkhangelsk Regional Clinical Hospital, Arkhangelsk, Russia
| | - Jianmin Chen
- Evive Biotechnology (Shanghai) Ltd, Shanghai, China
| | - Dean Rutty
- Everest Clinical Research, Markham, ON, Canada
| | - Renshu Li
- Evive Biotechnology (Shanghai) Ltd, Shanghai, China
| | - Shufang Wang
- Evive Biotechnology (Shanghai) Ltd, Shanghai, China
| | - Qingsong Hou
- Evive Biotechnology (Shanghai) Ltd, Shanghai, China
| | - Simon Li
- Evive Biotechnology (Shanghai) Ltd, Shanghai, China
| |
Collapse
|
5
|
Kshattry S, Parker TL, Huntington SF. Peripheral Blasts in a Patient Receiving Chemotherapy. JAMA 2023; 330:1581-1582. [PMID: 37801303 DOI: 10.1001/jama.2023.17117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
An older patient with stage II bladder carcinoma presented with 1 week of fatigue and 2 days of dyspnea on exertion. He was receiving carboplatin/gemcitabine with 6 mg of pegylated G-CSF chemotherapy; his white blood cell count was elevated, hemoglobin low, and ferritin notably increased. What is the diagnosis and what would you do next?
Collapse
Affiliation(s)
- Sabin Kshattry
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Terri L Parker
- Section of Hematology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Scott F Huntington
- Section of Hematology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
6
|
You Z, Zhang H, Huang Y, Zhao L, Tu H, Zhang Y, Lin X, Liang W. Assessing the Optimal Regimen: A Systematic Review and Network Meta-Analysis of the Efficacy and Safety of Long-Acting Granulocyte Colony-Stimulating Factors in Patients with Breast Cancer. Cancers (Basel) 2023; 15:3675. [PMID: 37509336 PMCID: PMC10378237 DOI: 10.3390/cancers15143675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/21/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Patients with breast cancer undergoing chemotherapy are susceptible to prolonged and severe neutropenia. Multiple biosimilars of long-acting granulocyte colony-stimulating factors (LA-G-CSFs) have been newly developed to prevent this disease. Nonetheless, which LA-G-CSF regimen has the optimal balance of efficacy and safety remains controversial. Moreover, there is a lack of evidence supporting clinical decisions on LA-G-CSF dose escalation in poor conditions. PubMed, Embase, Cochrane Library, Web of Science, and several Chinese databases were searched (December 2022) to collect randomized controlled trials (RCTs) about LA-G-CSFs preventing chemotherapy-induced neutropenia in breast cancer patients. No restrictions were imposed on language. A Bayesian network meta-analysis was performed. We assessed the incidence of severe neutropenia (SN) and febrile neutropenia (FN), the duration of SN (DSN), and the absolute neutrophil account recovery time (ANCrt) for efficacy, while the incidence of severe adverse events (SAE) was assessed for safety. The study was registered in PROSPERO (CRD42022361606). A total of 33 RCTs were included. Our network meta-analysis demonstrated that lipegfilgrastim 6 mg and eflapegrastim 13.2 mg outperformed other LA-G-CSFs with high efficacy rates and few safety concerns (SUCRA of lipegfilgrastim 6 mg: ANC rt 95.2%, FN 97.4%; eflapegrastim 13.2 mg: FN 87%, SN 89.3%). Additionally, 3.6 mg, 4.5 mg, 6 mg, and 13.2 mg dosages all performed significantly better than 1.8 mg in reducing the duration of SN (3.6 mg: DSN, SMD -0.68 [-1.13, -0.22; moderate]; 4.5 mg: -0.87 [-1.57, -0.17; low]; 6 mg: -0.89 [-1.49, -0.29; moderate]; 13.2 mg: -1.02 [1.63, -0.41; high]). Increasing the dosage from the guideline-recommended 6 mg to 13.2 mg can reduce both the duration and incidence of SN (SMD -0.13 [-0.24 to -0.03], RR 0.65 [0.43 to 0.96], respectively), with no significant difference in SAE. For patients with breast cancer, lipegfilgrastim 6 mg and eflapegrastim 13.2 mg might be the most effective regimen among LA-G-CSFs. Higher doses of LA-G-CSF may enhance efficacy without causing additional SAEs.
Collapse
Affiliation(s)
- Zhixuan You
- Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou 510182, China
| | - Haotian Zhang
- Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou 510182, China
| | - Yining Huang
- Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou 510182, China
| | - Lei Zhao
- Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou 510182, China
| | - Hengjia Tu
- Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou 510182, China
| | - Yuzhuo Zhang
- Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou 510182, China
| | - Xinqing Lin
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Wenhua Liang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
7
|
Díaz-Hernández M, Chang-Calderón J, Álvarez MA, Ramírez IR, Saez OLF, Medinilla AL, Castillo CYG, Borges CD, Chang SLL, León K, Carmenate T. PEGylation Strategy for Improving the Pharmacokinetic and Antitumoral Activity of the IL-2 No-alpha Mutein. Curr Pharm Des 2023; 29:3579-3588. [PMID: 38083887 DOI: 10.2174/0113816128279062231204110410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/30/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND In a previous work, an IL-2Rβγ biased mutant derived from human IL-2 and called IL-2noα, was designed and developed. Greater antitumor effects and lower toxicity were observed compared to native IL-2. Nevertheless, mutein has some disadvantages, such as a very short half-life of about 9-12 min, propensity for aggregation, and solubility problems. OBJECTIVE In this study, PEGylation was employed to improve the pharmacokinetic and antitumoral properties of the novel protein. METHODS Pegylated IL-2noα was characterized by polyacrylamide gel electrophoresis, size exclusion chromatography, in vitro cell proliferation and in vivo cell expansion bioassays, and pharmacokinetic and antitumor studies. RESULTS IL-2noα-conjugates with polyethylene glycol (PEG) of 1.2 kDa, 20 kDa, and 40 kDa were obtained by classical acylation. No significant changes in the secondary and tertiary structures of the modified protein were detected. A decrease in biological activity in vitro and a significant improvement in half-life were observed, especially for IL-2noα-PEG20K. PEGylation of IL-2noα with PEG20K did not affect the capacity of the mutant to induce preferential expansion of T effector cells over Treg cells. This pegylated IL-2noα exhibited a higher antimetastatic effect compared to unmodified IL-2noα in the B16F0 experimental metastases model, even when administered at lower doses and less frequently. CONCLUSION PEG20K was selected as the best modification strategy, to improve the blood circulation time of the IL-2noα with a superior antimetastatic effect achieved with lower doses.
Collapse
Affiliation(s)
| | - Janoi Chang-Calderón
- Department of Immune-regulation, Center of Molecular Immunology (Cuba), Havana, Cuba
| | - Miguel Angel Álvarez
- Department of Immune-regulation, Center of Molecular Immunology (Cuba), Havana, Cuba
| | - Ingrid Ruiz Ramírez
- Department of Quality Control, Center of Molecular Immunology (Cuba), Havana, Cuba
| | | | | | | | - Claudia Diaz Borges
- Department of Immune-regulation, Center of Molecular Immunology (Cuba), Havana, Cuba
| | - Sum Lai Lozada Chang
- Department of Product Development, Center of Molecular Immunology (Cuba), Havana, Cuba
| | - Kalet León
- Department of Research, Development and Bussines Direction, Center of Molecular Immunology (Cuba), Havana, Cuba
| | - Tania Carmenate
- Department of Immune-regulation, Center of Molecular Immunology (Cuba), Havana, Cuba
| |
Collapse
|