1
|
Wang B, Liang Y, Wu Y, Li Q, Zeng Y, Liu L, Cao W, Geng X, Huang Y, Wu Y, Pan J, Zhang X, Gu JJ. Sintilimab plus HPV vaccine for recurrent or metastatic cervical cancer. J Immunother Cancer 2024; 12:e009898. [PMID: 39608975 PMCID: PMC11603683 DOI: 10.1136/jitc-2024-009898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
PURPOSE Recurrent or metastatic cervical cancer (r/m CC) presents limited treatment options for patients failed or progressed quickly following first-line therapy. This study investigated the potential of sintilimab with a prophylactic human papillomavirus (HPV) quadrivalent vaccine as a second-line treatment for r/m CC. METHODS In this phase 2 clinical trial, patients with r/m CC previously unresponsive or intolerant to standard treatments for metastatic or recurrent lesions were enrolled. Participants received sintilimab (3 mg/kg for body weight <60 kg; 200 mg for ≥60 kg) every 3 weeks until 24 months or 35 cycles and 3 doses of the HPV quadrivalent vaccine (initial dose prior to sintilimab initiation, with subsequent doses at 2 and 6 months). The primary endpoint was the objective response rate (ORR). A Simon two-stage optimal design was used. RESULTS From October 2019 to October 2022, 13 patients with r/m CC were enrolled. ORR achieved 53.8% (95% CI 25.1% to 80.8%), and the disease control rate was 76.9% (95% CI 46.2% to 95.0%). Median follow-up duration was 16.07 months (range: 3.64-48.2 months), and median progressive free survival was 7.16 months (95% CI 1.91 -not applicable (NA)). The median overall survival (OS) was not reached (95% CI 9.89 -NA). Hypothyroidism (15.6%) was the most common treatment-related adverse event (AE). No grade 3 or above AEs were observed. CONCLUSIONS This study suggests the combination of sintilimab plus prophylactic HPV vaccine offers a potentially promising therapeutic strategy for patients with r/m CC unresponsive or intolerant to standard therapies.Trial registration numberNCT04096911.
Collapse
Affiliation(s)
- Buhai Wang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou University, Yangzhou, Jiangsu, China
| | - Yichen Liang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuechao Wu
- The Fifth People's Hospital of Changshu, Changshu, China
| | - Qiuxian Li
- Leshan Geriatric Specialized Hospital, Leshan, Sichuan, China
| | - Yichun Zeng
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou University, Yangzhou, Jiangsu, China
| | - Liqin Liu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenmiao Cao
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoru Geng
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuxiang Huang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou University, Yangzhou, Jiangsu, China
| | - Yinxia Wu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiulin Pan
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou University, Yangzhou, Jiangsu, China
| | - Xian Zhang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - J Juan Gu
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
2
|
Zhao F, Hong J, Zhou G, Huang T, Lin Z, Zhang Y, Liang L, Tang H. Elucidating the role of tumor-associated ALOX5+ mast cells with transformative function in cervical cancer progression via single-cell RNA sequencing. Front Immunol 2024; 15:1434450. [PMID: 39224598 PMCID: PMC11366577 DOI: 10.3389/fimmu.2024.1434450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Background Cervical cancer (CC) is the fourth most common malignancy among women globally and serves as the main cause of cancer-related deaths among women in developing countries. The early symptoms of CC are often not apparent, with diagnoses typically made at advanced stages, which lead to poor clinical prognoses. In recent years, numerous studies have shown that there is a close relationship between mast cells (MCs) and tumor development. However, research on the role MCs played in CC is still very limited at that time. Thus, the study conducted a single-cell multi-omics analysis on human CC cells, aiming to explore the mechanisms by which MCs interact with the tumor microenvironment in CC. The goal was to provide a scientific basis for the prevention, diagnosis, and treatment of CC, with the hope of improving patients' prognoses and quality of life. Method The present study acquired single-cell RNA sequencing data from ten CC tumor samples in the ArrayExpress database. Slingshot and AUCcell were utilized to infer and assess the differentiation trajectory and cell plasticity of MCs subpopulations. Differential expression analysis of MCs subpopulations in CC was performed, employing Gene Ontology, gene set enrichment analysis, and gene set variation analysis. CellChat software package was applied to predict cell communication between MCs subpopulations and CC cells. Cellular functional experiments validated the functionality of TNFRSF12A in HeLa and Caski cell lines. Additionally, a risk scoring model was constructed to evaluate the differences in clinical features, prognosis, immune infiltration, immune checkpoint, and functional enrichment across various risk scores. Copy number variation levels were computed using inference of copy number variations. Result The obtained 93,524 high-quality cells were classified into ten cell types, including T_NK cells, endothelial cells, fibroblasts, smooth muscle cells, epithelial cells, B cells, plasma cells, MCs, neutrophils, and myeloid cells. Furthermore, a total of 1,392 MCs were subdivided into seven subpopulations: C0 CTSG+ MCs, C1 CALR+ MCs, C2 ALOX5+ MCs, C3 ANXA2+ MCs, C4 MGP+ MCs, C5 IL32+ MCs, and C6 ADGRL4+ MCs. Notably, the C2 subpopulation showed close associations with tumor-related MCs, with Slingshot results indicating that C2 subpopulation resided at the intermediate-to-late stage of differentiation, potentially representing a crucial transition point in the benign-to-malignant transformation of CC. CNVscore and bulk analysis results further confirmed the transforming state of the C2 subpopulation. CellChat analysis revealed TNFRSF12A as a key receptor involved in the actions of C2 ALOX5+ MCs. Moreover, in vitro experiments indicated that downregulating the TNFRSF12A gene may partially inhibit the development of CC. Additionally, a prognosis model and immune infiltration analysis based on the marker genes of the C2 subpopulation provided valuable guidance for patient prognosis and clinical intervention strategies. Conclusions We first identified the transformative tumor-associated MCs subpopulation C2 ALOX5+ MCs within CC, which was at a critical stage of tumor differentiation and impacted the progression of CC. In vitro experiments confirmed the inhibitory effect of knocking down the TNFRSF12A gene on the development of CC. The prognostic model constructed based on the C2 ALOX5+MCs subset demonstrated excellent predictive value. These findings offer a fresh perspective for clinical decision-making in CC.
Collapse
Affiliation(s)
- Fu Zhao
- Department of Gynecological Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junjie Hong
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Guangyao Zhou
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tianjiao Huang
- The First School of Clinical Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yining Zhang
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, China
| | - Leilei Liang
- Department of Gynecological Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| | - Huarong Tang
- Department of Gynecological Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
3
|
Kromidas E, Geier A, Weghofer A, Liu HY, Weiss M, Loskill P. Immunocompetent PDMS-Free Organ-on-Chip Model of Cervical Cancer Integrating Patient-Specific Cervical Fibroblasts and Neutrophils. Adv Healthc Mater 2024; 13:e2302714. [PMID: 38029413 DOI: 10.1002/adhm.202302714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/04/2023] [Indexed: 12/01/2023]
Abstract
Despite preventive measures and available treatments, cervical cancer still ranks as the fourth most prevalent cancer among women worldwide and remains the leading cause of cancer death in women in many developing countries. To gain further insights into pathogenesis and to develop novel (immuno)therapies, more sophisticated human models recreating patient heterogeneities and including aspects of the tumor microenvironment are urgently required. A novel polydimethylsiloxane-free microfluidic platform, designed specifically for the generation and ccultivation of cervical cancerous tissue, is introduced. The microscale open-top tissue chambers of the cervical cancer-on-chip (CCoC) enable facile generation and long-term cultivation of SiHa spheroids in co-culture with donor-derived cervical fibroblasts. The resulting 3D tissue emulates physiological architecture and allows dissection of distinct effects of the stromal tissue on cancer viability and growth. Treatment with cisplatin at clinically-relevant routes of administration and dosing highlights the platform's applicability for drug testing. Moreover, the model is amenable for integration and recruitment of donor-derived neutrophils from the microvasculature-like channel into the tissue, all while retaining their ability to produce neutrophil extracellular traps. In the future, the immunocompetent CCoC featuring donor-specific primary cells and tumor spheroids has the potential to contribute to the development of new (immuno)therapeutic options.
Collapse
Affiliation(s)
- Elena Kromidas
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
| | - Alicia Geier
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
| | - Adrian Weghofer
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
| | - Hui-Yu Liu
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
| | - Martin Weiss
- Department for Biomedicine and Materials Science, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
- Department for Women's Health, Faculty of Medicine, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Peter Loskill
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
- Department for Biomedicine and Materials Science, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
- 3R Center Tübingen for In Vitro Models and Alternatives to Animal Testing, 72074, Tübingen, Germany
| |
Collapse
|
4
|
Wang J, Wang Q, Ma L, Lv K, Han L, Chen Y, Zhou R, Zhou H, Chen H, Wang Y, Zhang T, Yi D, Liu Q, Zhang Y, Li X, Cheng T, Zhang J, Huang C, Dong Y, Zhang W, Cen S. Development of an mRNA-based therapeutic vaccine mHTV-03E2 for high-risk HPV-related malignancies. Mol Ther 2024; 32:2340-2356. [PMID: 38715363 PMCID: PMC11286823 DOI: 10.1016/j.ymthe.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/16/2024] [Accepted: 04/30/2024] [Indexed: 07/06/2024] Open
Abstract
Human papillomavirus (HPV) 16 and 18 infections are related to many human cancers. Despite several preventive vaccines for high-risk (hr) HPVs, there is still an urgent need to develop therapeutic HPV vaccines for targeting pre-existing hrHPV infections and lesions. In this study, we developed a lipid nanoparticle (LNP)-formulated mRNA-based HPV therapeutic vaccine (mHTV)-03E2, simultaneously targeting the E2/E6/E7 of both HPV16 and HPV18. mHTV-03E2 dramatically induced antigen-specific cellular immune responses, leading to significant CD8+ T cell infiltration and cytotoxicity in TC-1 tumors derived from primary lung epithelial cells of C57BL/6 mice expressing HPV E6/E7 antigens, mediated significant tumor regression, and prolonged animal survival, in a dose-dependent manner. We further demonstrated significant T cell immunity against HPV16/18 E6/E7 antigens for up to 4 months post-vaccination in immunological and distant tumor rechallenging experiments, suggesting robust memory T cell immunity against relapse. Finally, mHTV-03E2 synergized with immune checkpoint blockade to inhibit tumor growth and extend animal survival, indicating the potential in combination therapy. We conclude that mHTV-03E2 is an excellent candidate therapeutic mRNA vaccine for treating malignancies caused by HPV16 or HPV18 infections.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Qixin Wang
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Lu Han
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | - Yunfeng Chen
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | - Rui Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Haokun Zhou
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | - Hua Chen
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | - Yi Wang
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | | | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Qian Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Tingting Cheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Jinming Zhang
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | | | - Yijie Dong
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China.
| | - Weiguo Zhang
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China.
| |
Collapse
|
5
|
Jiang S, Wang W, Yang Y. TIGIT: A potential immunotherapy target for gynecological cancers. Pathol Res Pract 2024; 255:155202. [PMID: 38367600 DOI: 10.1016/j.prp.2024.155202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Gynecological cancer represents a significant global health challenge, and conventional treatment modalities have demonstrated limited efficacy. However, recent investigations into immune checkpoint pathways have unveiled promising opportunities for enhancing the prognosis of patients with cancer. Among these pathways, TIGIT has surfaced as a compelling candidate owing to its capacity to augment the immune function of NK and T cells through blockade, thereby yielding improved anti-tumor effects and prolonged patient survival. Global clinical trials exploring TIGIT blockade therapy have yielded promising preliminary findings. Nevertheless, further research is imperative to comprehensively grasp the potential of TIGIT-based immunotherapy in optimizing therapeutic outcomes for gynecological cancers. This review primarily delineates the regulatory network and immunosuppressive mechanism of TIGIT, expounds upon its expression and therapeutic potential in three major gynecological cancers, and synthesizes the clinical trials of TIGIT-based cancer immunotherapy. Such insights aim to furnish novel perspectives and serve as reference points for subsequent research and clinical application targeting TIGIT in gynecological cancers.
Collapse
Affiliation(s)
- Siyue Jiang
- The third People's Hospital of Suining, Suining, Sichuan, China
| | - Wenhua Wang
- First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
6
|
Kobori T, Ito Y, Doukuni R, Urashima Y, Ito T, Obata T. Radixin modulates the plasma membrane localization of CD47 in human uterine cervical adenocarcinoma cells. J Reprod Immunol 2023; 158:103982. [PMID: 37364502 DOI: 10.1016/j.jri.2023.103982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/10/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Despite the dramatic success of immune checkpoint blockers in treating numerous cancer cell types, current therapeutic modalities provide clinical benefits to a subset of patients with cervical cancers. CD47 is commonly overexpressed in a broad variety of cancer cells, correlates with poor clinical prognosis, and acts as a dominant macrophage checkpoint by interacting with receptors expressed on macrophages. It allows cancer cells to escape from the innate immune system and hence is a potential therapeutic target for developing novel macrophage checkpoint blockade immunotherapies. As the intracellular scaffold proteins, ezrin/radixin/moesin (ERM) family proteins post-translationally regulate the cellular membrane localization of numerous transmembrane proteins, by crosslinking them with the actin cytoskeleton. We demonstrated that radixin modulates the plasma membrane localization and functionality of CD47 in HeLa cells. Immunofluorescence analysis and co-immunoprecipitation assay using anti-CD47 antibody showed the colocalization of CD47 and all three ERM families in the plasma membrane, and the molecular interactions between CD47 and all three ERM. Interestingly, gene silencing of only radixin, reduced the CD47 plasma membrane localization and functionality by means of flow cytometry and phagocytosis assay but had little influence on its mRNA expression. Together, in HeLa cells radixin may function as a principal scaffold protein responsible for the CD47 plasma membrane localization.
Collapse
Affiliation(s)
- Takuro Kobori
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Yui Ito
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Rina Doukuni
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Yoko Urashima
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Takuya Ito
- Laboratory of Natural Medicines, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Tokio Obata
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan.
| |
Collapse
|
7
|
Ollivier L, Moreau Bachelard C, Renaud E, Dhamelincourt E, Lucia F. The abscopal effect of immune-radiation therapy in recurrent and metastatic cervical cancer: a narrative review. Front Immunol 2023; 14:1201675. [PMID: 37539054 PMCID: PMC10394237 DOI: 10.3389/fimmu.2023.1201675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Despite human papillomavirus vaccination and screening, in about 5% of cases, cervical cancer (CC) is discovered at an initial metastatic stage. Moreover, nearly one-third of patients with locally advanced CC (LACC) will have a recurrence of their disease during follow-up. At the stage of recurrent or metastatic CC, there are very few treatment options. They are considered incurable with a very poor prognosis. For many years, the standard of care was the combination of platinum-based drug and paclitaxel with the possible addition of bevacizumab. The most recent years have seen the development of the use of immune checkpoint inhibitors (ICIs) (pembrolizumab, cemiplimab and others) in patients with CC. They have shown long term responses with improved overall survival of patients in 1st line (in addition to chemotherapy) or 2nd line (as monotherapy) treatment. Another emerging drug is tisotumab vedotin, an antibody-drug conjugate targeting tissue factor. Radiation therapy (RT) often has a limited palliative indication in metastatic cancers. However, it has been observed that RT can induce tumor shrinkage both in distant metastatic tumors beyond the radiation field and in primary irradiated tumors. This is a rarely observed phenomenon, called abscopal effect, which is thought to be related to the immune system and allows a tumor response throughout the body. It would be the activation of the immune system induced by the irradiation of cancer cells that would lead to a specific type of apoptosis, the immunogenic cell death. Today, there is a growing consensus that combining RT with ICIs may boost abscopal response or cure rates for various cancers. Here we will review the potential abscopal effect of immune-radiation therapy in metastatic cervical cancer.
Collapse
Affiliation(s)
- Luc Ollivier
- Department of Radiation Oncology, Institut De Cancérologie De L’Ouest (ICO), Saint-Herblain, France
| | | | - Emmanuelle Renaud
- Department of Medical Oncology, CHRU Morvan, University Hospital, Brest, France
| | | | - Francois Lucia
- Radiation Oncology Department, University Hospital, Brest, France
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| |
Collapse
|