1
|
Stokes ME, Vasciaveo A, Small JC, Zask A, Reznik E, Smith N, Wang Q, Daniels J, Forouhar F, Rajbhandari P, Califano A, Stockwell BR. Subtype-selective prenylated isoflavonoids disrupt regulatory drivers of MYCN-amplified cancers. Cell Chem Biol 2024; 31:805-819.e9. [PMID: 38061356 PMCID: PMC11031350 DOI: 10.1016/j.chembiol.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/18/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Transcription factors have proven difficult to target with small molecules because they lack pockets necessary for potent binding. Disruption of protein expression can suppress targets and enable therapeutic intervention. To this end, we developed a drug discovery workflow that incorporates cell-line-selective screening and high-throughput expression profiling followed by regulatory network analysis to identify compounds that suppress regulatory drivers of disease. Applying this approach to neuroblastoma (NBL), we screened bioactive molecules in cell lines representing its MYC-dependent (MYCNA) and mesenchymal (MES) subtypes to identify selective compounds, followed by PLATESeq profiling of treated cells. This revealed compounds that disrupt a sub-network of MYCNA-specific regulatory proteins, resulting in MYCN degradation in vivo. The top hit was isopomiferin, a prenylated isoflavonoid that inhibited casein kinase 2 (CK2) in cells. Isopomiferin and its structural analogs inhibited MYC and MYCN in NBL and lung cancer cells, highlighting the general MYC-inhibiting potential of this unique scaffold.
Collapse
Affiliation(s)
- Michael E Stokes
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Alessandro Vasciaveo
- Department of Systems Biology, Columbia University Medical Center, New York City, NY 10032, USA
| | - Jonnell Candice Small
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Arie Zask
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Eduard Reznik
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Nailah Smith
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Qian Wang
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Jacob Daniels
- Department of Pharmacology, Columbia University Medical Center, New York City, NY 10032, USA
| | - Farhad Forouhar
- Proteomics and Macromolecular Crystallography Shared Resource (PMCSR), Columbia University Medical Center, New York City, NY 10032, USA
| | - Presha Rajbhandari
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Medical Center, New York City, NY 10032, USA.
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA; Department of Chemistry, Columbia University, New York City, NY 10027, USA; Department of Pathology and Cell Biology and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
2
|
Wang S, Liu P, Yu J, Liu T. Multi-Omics Analysis Elucidates The Immune And Intratumor Microbes Characteristics Of Ubiquitination Subtypes In Lung Adenocarcinoma. Transl Oncol 2023; 36:101754. [PMID: 37549605 PMCID: PMC10423929 DOI: 10.1016/j.tranon.2023.101754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
Ubiquitination modification is closely related to cancer and participates in the regulation of tumor microenvironment. However, the role of ubiquitination modification in the immune response and prognosis of lung adenocarcinoma has not been elucidated. This study aims to establish a disease classification associated with ubiquitination and reveal the landscape of intratumor microbes in patients with lung adenocarcinoma for the first time. A total of 1314 patients with lung adenocarcinoma in the GEO and TCGA databases were included in our study. We constructed a ubiquitination scoring model using WGCNA and constructed ubiquitination subtypes using unsupervised clustering, analyzed the clinical characteristics, immune characteristics, and intratumor microbes characteristics, and screened out the relevant gene signatures, which were verified by RT-qPCR in human cancer cells. The results showed that the high ubiquitination subtype had poor prognosis, low degree of immune infiltration, high index of tumor stemness, and poor effect of immunotherapy. The subtypes with lower ubiquitination scores have better prognosis, higher tumor microenvironment score and better immunotherapy effect. The C2 subtype has high level of immune infiltration, lower intratumor microbes diversity and abundance, and good prognosis. The C3 subtype has low level of immune infiltration, higher intratumor microbes diversity and abundance, and poor prognosis. The C1 subtype has characteristics between C2 and C3. In summary, this paper constructs a scoring system and several subtypes based on ubiquitination genes, and analyzed the characteristics, which can help provide new methods for clinical treatment.
Collapse
Affiliation(s)
- Siqi Wang
- School of pharmacy, Minzu University of China, Beijing 100081, China; Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing 100081, China
| | - Pei Liu
- School of pharmacy, Minzu University of China, Beijing 100081, China; Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing 100081, China
| | - Jie Yu
- School of pharmacy, Minzu University of China, Beijing 100081, China; Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing 100081, China
| | - Tongxiang Liu
- School of pharmacy, Minzu University of China, Beijing 100081, China; Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
3
|
Peris I, Romero-Murillo S, Vicente C, Narla G, Odero MD. Regulation and role of the PP2A-B56 holoenzyme family in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188953. [PMID: 37437699 DOI: 10.1016/j.bbcan.2023.188953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Protein phosphatase 2A (PP2A) inactivation is common in cancer, leading to sustained activation of pro-survival and growth-promoting pathways. PP2A consists of a scaffolding A-subunit, a catalytic C-subunit, and a regulatory B-subunit. The functional complexity of PP2A holoenzymes arises mainly through the vast repertoire of regulatory B-subunits, which determine both their substrate specificity and their subcellular localization. Therefore, a major challenge for developing more effective therapeutic strategies for cancer is to identify the specific PP2A complexes to be targeted. Of note, the development of small molecules specifically directed at PP2A-B56α has opened new therapeutic avenues in both solid and hematological tumors. Here, we focus on the B56/PR61 family of PP2A regulatory subunits, which have a central role in directing PP2A tumor suppressor activity. We provide an overview of the mechanisms controlling the formation and regulation of these complexes, the pathways they control, and the mechanisms underlying their deregulation in cancer.
Collapse
Affiliation(s)
- Irene Peris
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Silvia Romero-Murillo
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Carmen Vicente
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maria D Odero
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|