1
|
Hoogendijk R, van den Broek TJM, Lee H, Mueller S, Kline C, Bianco J, Top J, de Zoete MR, Kester L, Calkoen F, van der Lugt J. Omnigene-Gut tm ensures fecal microbiome stability in the pediatric population. AMB Express 2024; 14:132. [PMID: 39641864 PMCID: PMC11624167 DOI: 10.1186/s13568-024-01798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
Increasing evidence exists that the gut microbiome influences toxicity as well as outcomes in a variety of cancers. To investigate the role of the gut microbiome in pediatric neuro-oncology, microbiome analysis has been included in multiple prospective pediatric neuro-oncology clinical trials (NCT05009992, NCT04732065, NCT04775485). In these trials, the OMNIgene-GUTtm preservation tubes are used for the collection of the feces. OMNIgene-GUTtm has demonstrated reliability in preserving the composition of the gut microbiome in adults; however, its validation for use in the pediatric population remains limited. Therefore, we compared the quality of the DNA by 16S rRNA gene sequencing after various methods of stabilizing fecal samples in pediatric populations, from the direct freeze method at - 80 °C to preserving samples with OMNIgene-GUTtm at room temperature for various durations. Our results showed that there were no statistically significant differences between the alpha-diversity, and beta-diversity. However, pairwise differential abundance analyses demonstrated that OMNIgene-GUT™ is superior in maintaining microbial community structure compared to storing samples without any preservation method. With the OMNIgene-GUTtm's stabilization of the fecal samples being superior and its ease-of-use benefits, it proves to be a valid and ideal method of stabilizing fecal samples for current and future pediatric clinical trials.
Collapse
Affiliation(s)
- Raoull Hoogendijk
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands.
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| | | | - Hyunju Lee
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Sabine Mueller
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
- Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
- Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Cassie Kline
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - John Bianco
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Janetta Top
- Department of Medical Microbiology, University Medical Center, Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Marcel R de Zoete
- Department of Medical Microbiology, University Medical Center, Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Lennart Kester
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Friso Calkoen
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Green GBH, Cox-Holmes AN, Potier ACE, Marlow GH, McFarland BC. Modulation of the Immune Environment in Glioblastoma by the Gut Microbiota. Biomedicines 2024; 12:2429. [PMID: 39594997 PMCID: PMC11591702 DOI: 10.3390/biomedicines12112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Studies increasingly support the role of the gut microbiota in glioma development and treatment, although the exact mechanisms remain unclear. Research indicates that the gut microbiota can influence glioma progression, response to therapies, and the effectiveness of treatments like immunotherapy, with certain microbial compositions being linked to better outcomes. Additionally, the gut microbiota impacts the tumor microenvironment, affecting both tumor growth and the response to treatment. This review will explore glioma, the gut microbiota, and how their interaction shapes glioma development and therapy responses. Additionally, this review examines the influence of gut microbiota metabolites, such as short-chain fatty acids (SCFAs) and tryptophan, on glioma development and treatment. It also explores gut microbiome signaling via pattern recognition receptors, and the role of molecular mimicry between microbial and tumor antigens in glioblastoma, and if these interactions affect glioma development and treatment.
Collapse
Affiliation(s)
- George B. H. Green
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| | - Alexis N. Cox-Holmes
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| | - Anna Claire E. Potier
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
- Undergraduate Cancer Biology Program, Birmingham, AL 35294, USA
| | - Gillian H. Marlow
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
- Undergraduate Cancer Biology Program, Birmingham, AL 35294, USA
| | - Braden C. McFarland
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Ghazi B, Harmak Z, Rghioui M, Kone AS, El Ghanmi A, Badou A. Decoding the secret of extracellular vesicles in the immune tumor microenvironment of the glioblastoma: on the border of kingdoms. Front Immunol 2024; 15:1423232. [PMID: 39267734 PMCID: PMC11390556 DOI: 10.3389/fimmu.2024.1423232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Over the last decades, extracellular vesicles (EVs) have become increasingly popular for their roles in various pathologies, including cancer and neurological and immunological disorders. EVs have been considered for a long time as a means for normal cells to get rid of molecules it no longer needs. It is now well established that EVs play their biological roles also following uptake or by the interaction of EV surface proteins with cellular receptors and membranes. In this review, we summarize the current status of EV production and secretion in glioblastoma, the most aggressive type of glioma associated with high mortality. The main purpose is to shed light on the EVs as a universal mediator of interkingdom and intrakingdom communication in the context of tumor microenvironment heterogeneity. We focus on the immunomodulatory EV functions in glioblastoma-immune cross-talk to enhance immune escape and reprogram tumor-infiltrating immune cells. We critically examine the evidence that GBM-, immune cell-, and microbiome-derived EVs impact local tumor microenvironment and host immune responses, and can enter the circulatory system to disseminate and drive premetastatic niche formation in distant organs. Taking into account the current state of the art in intratumoral microbiome studies, we discuss the emerging role of bacterial EV in glioblastoma and its response to current and future therapies including immunotherapies.
Collapse
Affiliation(s)
- Bouchra Ghazi
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Zakia Harmak
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mounir Rghioui
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Abdou-Samad Kone
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Adil El Ghanmi
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Abdallah Badou
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
| |
Collapse
|
4
|
Fedorova M, Snezhkina A, Kalinin D, Pudova E, Lantsova M, Krasnov G, Pavlov V, Kudryavtseva A. Intratumoral Microbiome in Head and Neck Paragangliomas. Int J Mol Sci 2024; 25:9180. [PMID: 39273129 PMCID: PMC11394710 DOI: 10.3390/ijms25179180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Head and neck paragangliomas (HNPGLs) are rare neoplasms arising from paraganglia of the parasympathetic nervous system. HNPGLs are characterized by high vascularity and are located in proximity to major vessels and nerves, which may be potential sources of microbial invasion in these tumors. There have been no studies in the literature on the microbiota in HNPGLs. Investigation of the microbiome associated with paragangliomas is important for understanding tumor pathogenesis. In this study, we investigated the microbiome composition in two sets of HNPGLs. First, 29 fresh frozen (FF) tissues were subjected to 16S rRNA gene sequencing; concurrently, a panel of candidate laboratory-derived contaminants was investigated. Second, we analyzed microbial reads from whole transcriptome sequencing data obtained for 82 formalin-fixed paraffin-embedded (FFPE) HNPGLs. The bacterial diversity in FF tumors was found to be significantly lower than that observed in FFPE HNPGLs. Based on 16S rRNA gene sequencing, only seven bacterial families were identified as potential tumor inhabitants: Bryobacteraceae, Enterococcaceae, Neisseriaceae, Legionellaceae, Vibrionaceae, Obscuribacteraceae, and Mycobacteriaceae. However, RNA-Seq demonstrated higher sensitivity for identifying microbiome composition and revealed abundant bacterial families that partially correlated with those previously described in pheochromocytomas and extra-adrenal paragangliomas. No viruses were found in HNPGLs. In summary, our findings indicated the presence of a microbiome in HNPGLs, comprising a number of bacterial families that overlap with those observed in pheochromocytomas/paragangliomas and glioblastomas.
Collapse
Affiliation(s)
- Maria Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Elena Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Margarita Lantsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladislav Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
Hagemeyer H, Hellwinkel OJC, Plata-Bello J. Zonulin as Gatekeeper in Gut-Brain Axis: Dysregulation in Glioblastoma. Biomedicines 2024; 12:1649. [PMID: 39200114 PMCID: PMC11352073 DOI: 10.3390/biomedicines12081649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Novel biomarkers and therapeutic strategies for glioblastoma, the most common malignant brain tumor with an extremely unfavorable prognosis, are urgently needed. Recent studies revealed a significant upregulation of the protein zonulin in glioblastoma, which correlates with patient survival. Originally identified as pre-haptoglobin-2, zonulin modulates both the intestinal barrier and the blood-brain barrier by disassembling tight junctions. An association of zonulin with various neuroinflammatory diseases has been observed. It can be suggested that zonulin links a putative impairment of the gut-brain barrier with glioblastoma carcinogenesis, leading to an interaction of the gut microbiome, the immune system, and glioblastoma. We therefore propose three interconnected hypotheses: (I) elevated levels of zonulin in glioblastoma contribute to its aggressiveness; (II) upregulated (serum-) zonulin increases the permeability of the microbiota-gut-brain barrier; and (III) this creates a carcinogenic and immunosuppressive microenvironment preventing the host from an effective antitumor response. The role of zonulin in glioblastoma highlights a promising field of research that could yield diagnostic and therapeutic options for glioblastoma patients and other diseases with a disturbed microbiota-gut-brain barrier.
Collapse
Affiliation(s)
- Hannah Hagemeyer
- Institut für Neuroimmunologie und Multiple Sklerose, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany;
| | - Olaf J. C. Hellwinkel
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Julio Plata-Bello
- Department of Neurosurgery, Hospital Universitario de Canarias, S/C de Tenerife, 38320 La Laguna, Spain
| |
Collapse
|
6
|
Yan J, Li B, Luo C. Gut microbiota's role in glioblastoma risk, with a focus on the mediating role of metabolites. Front Neurol 2024; 15:1386885. [PMID: 39022732 PMCID: PMC11253649 DOI: 10.3389/fneur.2024.1386885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
This study employed Mendelian randomization (MR) analysis to systematically investigate the potential connections between gut microbiota and the risk of glioblastoma (GBM). We identified 12 microbial groups closely associated with the incidence risk of GBM. Subsequently, MR analysis was conducted on 1,091 blood metabolites and 309 metabolite ratios, revealing 19 metabolites that exert an impact on the occurrence of GBM. Hypothesizing that gut microbiota may influence the risk of glioblastoma multiforme by modulating these metabolites, we performed MR analyses, considering each microbial group as exposure and each metabolite as an outcome. Through these analyses, we constructed a regulatory network encompassing gut microbiota, metabolites, and GBM, providing a novel perspective for a deeper understanding of the role of the gut-brain axis in the pathogenesis of GBM. This research offers crucial insights into how gut microbiota may affect the risk of GBM by regulating specific metabolites. The identified regulatory network of the gut-brain axis may play a significant role in the formation and development of GBM, providing valuable information for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Junqing Yan
- Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Bo Li
- Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Chun Luo
- Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Mueller S, Kline C, Franson A, van der Lugt J, Prados M, Waszak SM, Plasschaert SLA, Molinaro AM, Koschmann C, Nazarian J. Rational combination platform trial design for children and young adults with diffuse midline glioma: A report from PNOC. Neuro Oncol 2024; 26:S125-S135. [PMID: 38124481 PMCID: PMC11066905 DOI: 10.1093/neuonc/noad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 12/23/2023] Open
Abstract
Background Diffuse midline glioma (DMG) is a devastating pediatric brain tumor unresponsive to hundreds of clinical trials. Approximately 80% of DMGs harbor H3K27M oncohistones, which reprogram the epigenome to increase the metabolic profile of the tumor cells. Methods We have previously shown preclinical efficacy of targeting both oxidative phosphorylation and glycolysis through treatment with ONC201, which activates the mitochondrial protease ClpP, and paxalisib, which inhibits PI3K/mTOR, respectively. Results ONC201 and paxalisib combination treatment aimed at inducing metabolic distress led to the design of the first DMG-specific platform trial PNOC022 (NCT05009992). Conclusions Here, we expand on the PNOC022 rationale and discuss various considerations, including liquid biome, microbiome, and genomic biomarkers, quality-of-life endpoints, and novel imaging modalities, such that we offer direction on future clinical trials in DMG.
Collapse
Affiliation(s)
- Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, California, USA
| | - Cassie Kline
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrea Franson
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Michael Prados
- Department of Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Sebastian M Waszak
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Laboratory of Computational Neuro-Oncology, Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Annette M Molinaro
- Division of Biomedical Statistics and Informatics, Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
| | - Carl Koschmann
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children’s National Health System, Washington, District of Columbia, USA
- Brain Tumor Institute, Children’s National Health System, Washington, District of Columbia, USA
- DMG Research Center, Department of Pediatrics, University Children’s Hospital, University of Zurich, Zürich, Switzerland
| |
Collapse
|
8
|
Aljarrah D, Chalour N, Zorgani A, Nissan T, Pranjol MZI. Exploring the gut microbiota and its potential as a biomarker in gliomas. Biomed Pharmacother 2024; 173:116420. [PMID: 38471271 DOI: 10.1016/j.biopha.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
Gut microbiome alterations are associated with various cancers including brain tumours such as glioma and glioblastoma. The gut communicates with the brain via a bidirectional pathway known as the gut-brain axis (GBA) which is essential for maintaining homeostasis. The gut microbiota produces many metabolites including short chain fatty acids (SCFAs) and essential amino acids such as glutamate, glutamine, arginine and tryptophan. Through the modulation of these metabolites the gut microbiome is able to regulate several functions of brain cells, immune cells and tumour cells including DNA methylation, mitochondrial function, the aryl hydrocarbon receptor (AhR), T-cell proliferation, autophagy and even apoptosis. Here, we summarise current findings on gut microbiome with respect to brain cancers, an area of research that is widely overlooked. Several studies investigated the relationship between gut microbiota and brain tumours. However, it remains unclear whether the gut microbiome variation is a cause or product of cancer. Subsequently, a biomarker panel was constructed for use as a predictive, prognostic and diagnostic tool with respect to multiple cancers including glioma and glioblastoma multiforme (GBM). This review further presents the intratumoural microbiome, a fascinating microenvironment within the tumour as a possible treatment target that can be manipulated to maximise effectiveness of treatment via personalised therapy. Studies utilising the microbiome as a biomarker and therapeutic strategy are necessary to accurately assess the effectiveness of the gut microbiome as a clinical tool with respect to brain cancers.
Collapse
Affiliation(s)
- Dana Aljarrah
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK.
| | - Naima Chalour
- Cognitive and Behavioural Neuroscience laboratory, Houari Boumediene University of Science and Technology, Bab Ezzouar, Algiers, Algeria; Faculty of Biological Sciences, Houari Boumediene University of Science and Technology, Bab Ezzouar, Algiers, Algeria.
| | - Amine Zorgani
- The Microbiome Mavericks, 60 rue Christian Lacouture, Bron 69500, France.
| | - Tracy Nissan
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Md Zahidul I Pranjol
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
9
|
Wu J, Zhang P, Mei W, Zeng C. Intratumoral microbiota: implications for cancer onset, progression, and therapy. Front Immunol 2024; 14:1301506. [PMID: 38292482 PMCID: PMC10824977 DOI: 10.3389/fimmu.2023.1301506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Significant advancements have been made in comprehending the interactions between the microbiome and cancer. However, prevailing research predominantly directs its focus toward the gut microbiome, affording limited consideration to the interactions of intratumoral microbiota and tumors. Within the tumor microenvironment (TME), the intratumoral microbiome and its associated products wield regulatory influence, directing the modulation of cancer cell properties and impacting immune system functionality. However, to grasp a more profound insight into the intratumoral microbiota in cancer, further research into its underlying mechanisms is necessary. In this review, we delve into the intricate associations between intratumoral microbiota and cancer, with a specific focus on elucidating the significant contribution of intratumoral microbiota to the onset and advancement of cancer. Notably, we provide a detailed exploration of therapeutic advances facilitated by intratumoral microbiota, offering insights into recent developments in this burgeoning field.
Collapse
Affiliation(s)
- Jinmei Wu
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Pengfei Zhang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Wuxuan Mei
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
10
|
Wang W, Ou Z, Huang X, Wang J, Li Q, Wen M, Zheng L. Microbiota and glioma: a new perspective from association to clinical translation. Gut Microbes 2024; 16:2394166. [PMID: 39185670 DOI: 10.1080/19490976.2024.2394166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Gliomas pose a significant challenge in oncology due to their malignant nature, aggressive growth, frequent recurrence, and complications posed by the blood-brain barrier. Emerging research has revealed the critical role of gut microbiota in influencing health and disease, indicating its possible impact on glioma pathogenesis and treatment responsiveness. This review focused on existing evidence and hypotheses on the relationship between microbiota and glioma from progression to invasion. By discussing possible mechanisms through which microbiota may affect glioma biology, this paper offers new avenues for targeted therapies and precision medicine in oncology.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihao Ou
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xixin Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qianbei Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minghui Wen
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Luo F, Wang X, Ye C, Sun H. Microbial Biomarkers in Liquid Biopsy for Cancer: An Overview and Future Directions. Cancer Control 2024; 31:10732748241292019. [PMID: 39431347 PMCID: PMC11500238 DOI: 10.1177/10732748241292019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
In recent years, the relationship between microbes and tumors has led to a new wave of scholarly pursuits. Due to the growing awareness of the importance of microbiota, including those within tumors, for cancer onset, progression, metastasis, and treatment, researchers have come to understand that microbiota and the tumor microenvironment together form a dynamic and complex ecosystem. Liquid biopsy technology, a non-invasive and easily repeatable method for sample collection, combined with emerging multi-omics techniques, allows for a more comprehensive and in-depth exploration of microbial signals and characteristics in bodily fluids. Microbial biomarkers hold immense potential in the early diagnosis, treatment stratification, and prognosis prediction of cancer. In this review, we describe the significant potential of microbial biomarkers in liquid biopsy for clinical applications in cancer, including early diagnosis, predicting treatment responses, and prognosis. Moreover, we discuss current limitations and potential solutions related to microbial biomarkers. This review aims to provide an overview and future directions of microbial biomarkers in liquid biopsy for cancer clinical practice.
Collapse
Affiliation(s)
| | - Xinyue Wang
- Xinyue Wang, MB, Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, 253# Gongye Road, Guangzhou 510280, China.
| | | | - Haitao Sun
- Xinyue Wang, MB, Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, 253# Gongye Road, Guangzhou 510280, China.
| |
Collapse
|
12
|
Kim J, Kim Y, La J, Park WH, Kim HJ, Park SH, Ku KB, Kang BH, Lim J, Kwon MS, Lee HK. Supplementation with a high-glucose drink stimulates anti-tumor immune responses to glioblastoma via gut microbiota modulation. Cell Rep 2023; 42:113220. [PMID: 37804509 DOI: 10.1016/j.celrep.2023.113220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/22/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023] Open
Abstract
A high-sugar diet induces lifestyle-associated metabolic diseases, such as obesity and diabetes, which may underlie the pro-tumor effects of a high-sugar diet. We supply GL261 syngeneic glioblastoma (GBM) mice with a short-term high-glucose drink (HGD) and find an increased survival rate with no evidence of metabolic disease. Modulation of the gut microbiota through HGD supplementation is critical for enhancing the anti-tumor immune response. Single-cell RNA sequencing shows that gut microbiota modulation by HGD supplementation increases the T cell-mediated anti-tumor immune response in GBM mice. We find that the cytotoxic CD4+ T cell population in GBM is increased due to synergy with anti-programmed cell death protein 1 (anti-PD-1) immune checkpoint inhibitors, but this effect depends upon HGD supplementation. Thus, we determine that HGD supplementation enhances anti-tumor immune responses in GBM mice through gut microbiota modulation and suggest that the role of HGD supplementation in GBM should be re-examined.
Collapse
Affiliation(s)
- Jaeho Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Jeongwoo La
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Won Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyun-Jin Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Hee Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Keun Bon Ku
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Byeong Hoon Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhee Lim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Myoung Seung Kwon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
13
|
Investigational Microbiological Therapy for Glioma. Cancers (Basel) 2022; 14:cancers14235977. [PMID: 36497459 PMCID: PMC9736089 DOI: 10.3390/cancers14235977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Glioma is the most common primary malignancy of the central nervous system (CNS), and 50% of patients present with glioblastoma (GBM), which is the most aggressive type. Currently, the most popular therapies are progressive chemotherapy and treatment with temozolomide (TMZ), but the median survival of glioma patients is still low as a result of the emergence of drug resistance, so we urgently need to find new therapies. A growing number of studies have shown that the diversity, bioactivity, and manipulability of microorganisms make microbial therapy a promising approach for cancer treatment. However, the many studies on the research progress of microorganisms and their derivatives in the development and treatment of glioma are scattered, and nobody has yet provided a comprehensive summary of them. Therefore, in this paper, we review the research progress of microorganisms and their derivatives in the development and treatment of glioma and conclude that it is possible to treat glioma by exogenous microbial therapies and targeting the gut-brain axis. In this article, we discuss the prospects and pressing issues relating to these therapies with the aim of providing new ideas for the treatment of glioma.
Collapse
|