1
|
Wang H, Liu C, Jin K, Li X, Zheng J, Wang D. Research advances in signaling pathways related to the malignant progression of HSIL to invasive cervical cancer: A review. Biomed Pharmacother 2024; 180:117483. [PMID: 39353319 DOI: 10.1016/j.biopha.2024.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The progression of high-grade squamous intraepithelial lesion (HSIL) to invasive cervical cancer (ICC) is a complex process involving persistent human papillomavirus (HPV) infection and changes in signal transduction regulation, energy and material metabolism, cell proliferation, autoimmune, and other biological process in vaginal microenvironment and immune microenviroment. Signaling pathways are a series of interacting molecules in cells that regulate various physiological functions of cells, such as growth, differentiation, metabolism, and death. In the progression of HSIL to ICC, abnormal activation or inhibition in signaling pathways plays an essensial role. This review presented some signaling pathways related to the malignant progression of HSIL to ICC, including p53, Rb, PI3K/AKT/mTOR, Wnt/β-catenin, Notch, NF-κB, MAPK, TGF-β, JAK-STAT, Hippo, and Hedgehog. The molecular mechanisms involved in the biological process of pathway regulation were also analyzed, in order to illustrate the molecular pathway of HSIL progression to ICC and provide references for the development of more effective prevention and treatment methods.
Collapse
Affiliation(s)
- Huifang Wang
- Department of Obstetrics and Gynecology, Quanzhou Medical College, Quanzhou, Fujian 362010, China
| | - Chang Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Keer Jin
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Xiang Li
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Jiaxin Zheng
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China.
| |
Collapse
|
2
|
Maxwell DL, Oluwayiose OA, Houle E, Roth K, Nowak K, Sawant S, Paskavitz AL, Liu W, Gurdziel K, Petriello MC, Richard Pilsner J. Mixtures of per- and polyfluoroalkyl substances (PFAS) alter sperm methylation and long-term reprogramming of offspring liver and fat transcriptome. ENVIRONMENT INTERNATIONAL 2024; 186:108577. [PMID: 38521043 DOI: 10.1016/j.envint.2024.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/08/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Male fertility has been declining worldwide especially in countries with high levels of endocrine disrupting chemicals (EDCs). Per- and polyfluorinated alkyl Substances (PFAS) have been classified as EDCs and have been linked to adverse male reproductive health. The mechanisms of these associations and their implications on offspring health remain unknown. The aims of the current study were to assess the effect of PFAS mixtures on the sperm methylome and transcriptional changes in offspring metabolic tissues (i.e., liver and fat). C57BL/6 male mice were exposed to a mixture of PFAS (PFOS, PFOA, PFNA, PFHxS, Genx; 20 µg/L each) for 18-weeks or water as a control. Genome-wide methylation was assessed on F0 epidydimal sperm using reduced representation bisulfite sequencing (RRBS) and Illumina mouse methylation array, while gene expression was assessed by bulk RNA sequencing in 8-week-old offspring derived from unexposed females. PFAS mixtures resulted in 2,861 (RRBS) and 83 (Illumina) sperm DMRs (q < 0.05). Functional enrichment revealed that PFAS-induced sperm DMRs were associated with behavior and developmental pathways in RRBS, while Illumina DMRs were related to lipid metabolism and cell signaling. Additionally, PFAS mixtures resulted in 40 and 53 differentially expressed genes (DEGs) in the liver and fat of males, and 9 and 31 DEGs in females, respectively. Functional enrichment of DEGs revealed alterations in cholesterol metabolism and mitotic cell cycle regulation in the liver and myeloid leukocyte migration in fat of male offspring, while in female offspring, erythrocyte development and carbohydrate catabolism were affected in fat. Our results demonstrate that exposure to a mixture of legacy and newly emerging PFAS chemicals in adult male mice result in aberrant sperm methylation and altered gene expression of offspring liver and fat in a sex-specific manner. These data indicate that preconception PFAS exposure in males can be transmitted to affect phenotype in the next generation.
Collapse
Affiliation(s)
- DruAnne L Maxwell
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America; Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Oladele A Oluwayiose
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Emily Houle
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, the United States of America
| | - Karolina Nowak
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Savni Sawant
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America; Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Amanda L Paskavitz
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America; Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, the United States of America; Department of Pharmacology, School of Medicine, Wayne State University, Detroit 48201, MI, the United States of America; Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Katherine Gurdziel
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, the United States of America; Department of Pharmacology, School of Medicine, Wayne State University, Detroit 48201, MI, the United States of America
| | - Michael C Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, the United States of America; Department of Pharmacology, School of Medicine, Wayne State University, Detroit 48201, MI, the United States of America
| | - J Richard Pilsner
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, the United States of America.
| |
Collapse
|
3
|
Fu L, Ding H, Bai Y, Cheng L, Hu S, Guo Q. IDI1 inhibits the cGAS-Sting signaling pathway in hepatocellular carcinoma. Heliyon 2024; 10:e27205. [PMID: 38449594 PMCID: PMC10915403 DOI: 10.1016/j.heliyon.2024.e27205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Metabolic reprogramming is one of the prominent features that distinguishes tumor cells from normal cells. The role of metabolic abnormalities in regulating innate immunity is poorly understood. In this study, we found that IDI1 is significantly upregulated in liver cancer. IDI1 has no significant effect on the growth or invasion of liver cancer cells but significantly promotes liver cancer development in mice. Through molecular mechanism studies, we found that IDI1 interacts with the important regulator of innate immunity cGAS and recruits the E3 ligase TRIM41 to promote cGAS ubiquitination and degradation, inhibiting the cGAS-Sting signaling pathway. IDI1 inhibits the phosphorylation of TBK1 and the downstream factor IRF3 as well as the expression of CCL5 and CXCL10. In summary, this study revealed the important role of the metabolic enzyme IDI1 in the regulation of innate immunity, suggesting that it may be a potential target for liver cancer treatment.
Collapse
Affiliation(s)
- Lin Fu
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, 7th Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Hui Ding
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, 7th Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Yangqiu Bai
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, 7th Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Lina Cheng
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, 7th Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Shanshan Hu
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, 7th Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Qiongya Guo
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, 7th Weiwu Road, Zhengzhou, 450000, Henan, China
| |
Collapse
|
4
|
Guo M, Qiao Y, Lu Y, Zhu L, Zheng L. Squalene epoxidase facilitates cervical cancer progression by modulating tumor protein p53 signaling pathway. J Obstet Gynaecol Res 2023; 49:1383-1392. [PMID: 36843235 DOI: 10.1111/jog.15576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/26/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND The mortality of cervical cancer (CC) is quite high and advanced CC is hard to cure. Accordingly, to find the mechanism of CC progression at molecular level is imminent. METHODS The mRNA expression data were acquired from The Cancer Genome Atlas database, and squalene epoxidase (SQLE) level in the tumor and adjuvant tissues of CC was analyzed. The pathway enrichment analysis of target mRNAs was performed based on the GSEA database. The cancerous tissues and para-cancerous tissues of CC patients were collected for immunohistochemistry. SQLE and p53 mRNA expression was ensured by qRT-polymerase chain reaction. SQLE and p53 protein levels were determined by western blot. Cell functional assays focused on evaluating the malignant behaviors of cancer cells in each treatment group. Nude mouse xenograft models were constructed for tumorigenicity analysis. RESULTS Bioinformatics analysis revealed that SQLE expression was high in CC tissues, which was linked to the poor prognosis. SQLE could affect the p53 signaling pathway. Cell functional assays demonstrated that SQLE expression was promoted in CC cell lines, and overexpressing SQLE facilitated the malignant phenotypes of CC cells, whereas silencing SQLE suppressed CC progression in vitro and in vivo. Besides, the repressed p53 signaling pathway could reverse the effect caused by silenced SQLE. CONCLUSION SQLE could promote CC progression by modulating the p53 signaling pathway.
Collapse
Affiliation(s)
- Minhui Guo
- Department of Gynecology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China.,Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Hangzhou, China
| | - Yan Qiao
- Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, Jiangsu, China
| | - Yong Lu
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Li Zhu
- Department of Gynecology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China.,Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Hangzhou, China
| | - Lingzhi Zheng
- Department of Gynecology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China.,Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|