1
|
Chouhan S, Kumar A, Muhammad N, Usmani D, Khan TH. Sirtuins as Key Regulators in Pancreatic Cancer: Insights into Signaling Mechanisms and Therapeutic Implications. Cancers (Basel) 2024; 16:4095. [PMID: 39682281 DOI: 10.3390/cancers16234095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands as one of the most lethal cancers, marked by rapid progression, pronounced chemoresistance, and a complex network of genetic and epigenetic dysregulation. Within this challenging context, sirtuins, NAD+-dependent deacetylases, have emerged as pivotal modulators of key cellular processes that drive pancreatic cancer progression. Each sirtuin contributes uniquely to PDAC pathogenesis. SIRT1 influences apoptosis and chemoresistance through hypoxia, enhancing glycolytic metabolism and HIF-1α signaling, which sustain tumor survival against drugs like gemcitabine. SIRT2, conversely, disrupts cancer cell proliferation by inhibiting eIF5A, while SIRT3 exerts tumor-suppressive effects by regulating mitochondrial ROS and glycolysis. SIRT4 inhibits aerobic glycolysis, and its therapeutic upregulation has shown promise in curbing PDAC progression. Furthermore, SIRT5 modulates glutamine and glutathione metabolism, offering an avenue to disrupt PDAC's metabolic dependencies. SIRT6 and SIRT7, through their roles in angiogenesis, EMT, and metastasis, represent additional targets, with modulators of SIRT6, such as JYQ-42, showing potential to reduce tumor invasiveness. This review aims to provide a comprehensive exploration of the emerging roles of sirtuins, a family of NAD+-dependent enzymes, as critical regulators within the oncogenic landscape of pancreatic cancer. This review meticulously explores the nuanced involvement of sirtuins in pancreatic cancer, elucidating their contributions to tumorigenesis and suppression through mechanisms such as metabolic reprogramming, the maintenance of genomic integrity and epigenetic modulation. Furthermore, it emphasizes the urgent need for the development of targeted therapeutic interventions aimed at precisely modulating sirtuin activity, thereby enhancing therapeutic efficacy and optimizing patient outcomes in the context of pancreatic malignancies.
Collapse
Affiliation(s)
- Surbhi Chouhan
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75235, USA
- Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Naoshad Muhammad
- Department of Radiation Oncology, School of Medicine, Washington University, St. Louis, MO 63130, USA
| | - Darksha Usmani
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Tabish H Khan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| |
Collapse
|
2
|
Klinger B, Rausch I, Sieber A, Kutz H, Kruse V, Kirchner M, Mertins P, Kieser A, Blüthgen N, Kube D. Quantitative modeling of signaling in aggressive B cell lymphoma unveils conserved core network. PLoS Comput Biol 2024; 20:e1012488. [PMID: 39352924 PMCID: PMC11469524 DOI: 10.1371/journal.pcbi.1012488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/11/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
B cell receptor (BCR) signaling is required for the survival and maturation of B cells and is deregulated in B cell lymphomas. While proximal BCR signaling is well studied, little is known about the crosstalk of downstream effector pathways, and a comprehensive quantitative network analysis of BCR signaling is missing. Here, we semi-quantitatively modelled BCR signaling in Burkitt lymphoma (BL) cells using systematically perturbed phosphorylation data of BL-2 and BL-41 cells. The models unveiled feedback and crosstalk structures in the BCR signaling network, including a negative crosstalk from p38 to MEK/ERK. The relevance of the crosstalk was verified for BCR and CD40 signaling in different BL cells and confirmed by global phosphoproteomics on ERK itself and known ERK target sites. Compared to the starting network, the trained network for BL-2 cells was better transferable to BL-41 cells. Moreover, the BL-2 network was also suited to model BCR signaling in Diffuse large B cell lymphoma cells lines with aberrant BCR signaling (HBL-1, OCI-LY3), indicating that BCR aberration does not cause a major downstream rewiring.
Collapse
Affiliation(s)
- Bertram Klinger
- Institute of Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isabel Rausch
- Clinic of Hematology and Medical Oncology, University Medical Centre Goettingen, Göttingen, Germany
- ZytoVision GmbH, Bremerhaven, Germany
| | - Anja Sieber
- Institute of Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helmut Kutz
- Research Unit Gene Vectors, Helmholtz Center Munich—German Research Center for Environmental Health, Munich, Germany
| | - Vanessa Kruse
- Clinic of Hematology and Medical Oncology, University Medical Centre Goettingen, Göttingen, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité—Universitaetsmedizin Berlin and Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité—Universitaetsmedizin Berlin and Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Arnd Kieser
- Research Unit Gene Vectors, Helmholtz Center Munich—German Research Center for Environmental Health, Munich, Germany
- Research Unit Signaling and Translation, Helmholtz Center Munich—German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Kube
- Clinic of Hematology and Medical Oncology, University Medical Centre Goettingen, Göttingen, Germany
| |
Collapse
|
3
|
Mahajan M, Sarkar A, Mondal S. Integrative network analysis of transcriptomics data reveals potential prognostic biomarkers for colorectal cancer. Cancer Med 2024; 13:e7391. [PMID: 38872418 PMCID: PMC11176588 DOI: 10.1002/cam4.7391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION Cross-talk among biological pathways is essential for normal biological function and plays a significant role in cancer progression. Through integrated network analysis, this study explores the significance of pathway cross-talk in colorectal cancer (CRC) development at both the pathway and gene levels. METHODS In this study, we integrated the gene expression data with domain knowledge to construct state-dependent pathway cross-talk networks. The significance of the genes involved in pathway cross-talk was assessed by analyzing their association with cancer hallmarks, disease-gene relation, genetic alterations, and survival analysis. We also analyzed the gene regulatory network to identify the dysregulated genes and their role in CRC progression. RESULTS Cross-talk was observed between immune-related pathways and pathways associated with cell communication and signaling. The PTPRC gene was identified as a mediator, facilitating interactions within the immune system and other signaling pathways. The rewired interactions of ITGA7 were identified as influential in the epithelial-mesenchymal transition in CRC. This study also highlighted the crucial link between cell communication and vascular smooth muscle contraction pathway in CRC progression. The survival analysis of identified gene clusters showed their significant prognostic value in distinguishing high-risk from low-risk CRC groups, and L1000CDS2 revealed seven potential drug molecules in CRC. Nine dysregulated genes (CTNNB1, EP300, JUN, MYC, NFKB1, RELA, SP1, STAT1, and TP53) emerge as transcription factors acting as common regulators across various pathways. CONCLUSIONS This study highlights the crucial role of pathway cross-talk in CRC progression and identified the potential prognostic biomarkers and potential drug molecules.
Collapse
Affiliation(s)
- Mohita Mahajan
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K.K. Birla Goa campus, Goa, India
| | - Angshuman Sarkar
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K.K. Birla Goa campus, Goa, India
| | - Sukanta Mondal
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K.K. Birla Goa campus, Goa, India
| |
Collapse
|
4
|
Li SQ, Xu WT, Yin YX, Wei HT, Li KZ, Xie MZ, Lv F, Xie LY, Hu BL. SNHG4-mediated PTEN destabilization confers oxaliplatin resistance in colorectal cancer cells by inhibiting ferroptosis. Apoptosis 2024; 29:835-848. [PMID: 38573492 DOI: 10.1007/s10495-024-01948-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 04/05/2024]
Abstract
Oxaliplatin resistance poses a significant challenge in colorectal cancer (CRC) therapy, necessitating further investigation into the underlying molecular mechanisms. This study aimed to elucidate the regulatory role of SNHG4 in oxaliplatin resistance and ferroptosis in CRC. Our findings revealed that treatment with oxaliplatin led to downregulation of SNHG4 expression in CRC cells, while resistant CRC cells exhibited higher levels of SNHG4 compared to parental cells. Silencing SNHG4 attenuated oxaliplatin resistance and reduced the expression of resistance-related proteins MRD1 and MPR1. Furthermore, induction of ferroptosis effectively diminished oxaliplatin resistance in both parental and resistant CRC cells. Notably, ferroptosis induction resulted in decreased SNHG4 expression, whereas SNHG4 overexpression suppressed ferroptosis. Through FISH, RIP, and RNA pull-down assays, we identified the cytoplasmic localization of both SNHG4 and PTEN, establishing that SNHG4 directly targets PTEN, thereby reducing mRNA stability in CRC cells. Silencing PTEN abrogated the impact of SNHG4 on oxaliplatin resistance and ferroptosis in CRC cells. In vivo experiments further validated the influence of SNHG4 on oxaliplatin resistance and ferroptosis in CRC cells through PTEN regulation. In conclusion, SNHG4 promotes resistance to oxaliplatin in CRC cells by suppressing ferroptosis through instability of PTEN, thus serves as a target for patients with oxaliplatin-base chemoresistance.
Collapse
Affiliation(s)
- Si-Qi Li
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, China
| | - Wen-Ting Xu
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, China
| | - Yi-Xin Yin
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, China
| | - Hao-Tang Wei
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Guangxi Medical University, Guangxi, 530031, China
| | - Ke-Zhi Li
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, China
| | - Ming-Zhi Xie
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Feng Lv
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, China
| | - Li-Ye Xie
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, China
| | - Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
5
|
Enomoto H, Nishimura T, Fukunushi S, Shiomi H, Iijima H. Determination of the Possible Target Genes of Hepatoma-derived Growth Factor in Hepatoma Cells. In Vivo 2023; 37:1975-1979. [PMID: 37652516 PMCID: PMC10500524 DOI: 10.21873/invivo.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM We identified a new growth factor, hepatoma-derived growth factor (HDGF), which is a presumed growth-stimulating factor of hepatocellular carcinoma (HCC). Recently, we identified two microRNAs (miR-6072 and miR-3137) induced by HDGF, which were also found to be associated with the prognosis of HCC patients. This study aimed to identify the target genes of these HDGF-related microRNAs. MATERIALS AND METHODS A public database was searched for candidate target genes of HDGF-related microRNAs. Using the microarray system, the genes whose expression changed in response to HDGF administration were determined. Finally, a public cancer genomics database was searched for genes that were induced by HDGF and associated with the prognosis of HCC. RESULTS A total of 1,132 genes were identified as common target genes of the 2 HDGF-related microRNAs. Among these genes, a microarray system showed that the expression of 6 genes was increased (≥1.5-fold) or decreased (≤0.67-fold) after HDGF administration. Using a cancer genomics database, two of the six genes were found to be related to the prognosis of HCC. A high expression of alkylglycerone phosphate synthase (AGPS) was significantly associated with a poor survival (p=0.0025, 0.0063 and 0.0081 for the 1-, 3- and 5-year survival, respectively). A high expression of the shroom family member 4 (SHROOM4) gene was found to be significantly associated with a better survival (p=0.003, 0.0006 and 0.0006 for the 1-, 3- and 5-year survival, respectively). CONCLUSION This study identified potential target genes of HDGF-related microRNAs that were associated with the prognosis of HCC.
Collapse
Affiliation(s)
- Hirayuki Enomoto
- Division of Hepatobiliary and Pancreatic Diseases, Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Japan
| | - Takashi Nishimura
- Division of Hepatobiliary and Pancreatic Diseases, Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Japan
| | - Shinya Fukunushi
- Division of Hepatobiliary and Pancreatic Diseases, Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Japan
| | - Hideyuki Shiomi
- Division of Hepatobiliary and Pancreatic Diseases, Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Japan
| | - Hiroko Iijima
- Division of Hepatobiliary and Pancreatic Diseases, Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Japan
| |
Collapse
|
6
|
Zhang Y, Wu T, Wang Y, Chen Z, Chen J, Lu S, Xia W. Reciprocal FGF19-GLI2 signaling induces epithelial-to-mesenchymal transition to promote lung squamous cell carcinoma metastasis. Cell Oncol (Dordr) 2023; 46:437-450. [PMID: 36598638 DOI: 10.1007/s13402-022-00760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Metastatic lung squamous cell carcinoma (LUSC) is one of the most common causes of cancer death worldwide. As yet, however, the molecular mechanism underlying LUSC metastasis remains elusive. In this study, we report a novel mechanism involving signaling interactions between FGF19 and GLI2 that could drive the progression of LUSC. METHODS The expression of FGF19 in human LUSC samples was assessed by immunohistochemistry. The concentration of FGF19 in serum samples was assessed by ELISA. RNA sequencing, scratch wound-healing, trans-well, GO analysis, GSEA, luciferase reporter, Western blotting, immunofluorescence and immunohistochemistry assays, as well as an animal model were used to investigate the molecular mechanism underlying FGF19 driven LUSC progression. The therapeutic effect of a GLI2 inhibitor was determined using both in vitro cellular and in vivo animal experiments. RESULTS We found that FGF19, a member of the fibroblast growth factor family, plays a crucial role in the invasion and metastasis of LUSC, and identified GLI2 as an important downstream effector of FGF19 involved in metastasis. Surprisingly, we found that FGF19 and GLI2 could reciprocally induce the expression of each other, and form a positive feedback loop to promote LUSC cell invasion and metastasis. These findings were corroborated by an association between a poor prognosis of LUSC patients and FGF19/GLI2 co-expression. In addition, we found that the GLI inhibitor GANT61 could effectively reduce FGF19-mediated LUSC invasion and metastasis. CONCLUSION Our data suggest that FGF19 may serve as a novel biomarker for predicting metastatic LUSC. Intervening with the FGF19-GLI2 feedback loop may be a strategy for the treatment of FGF19-driven LUSC metastasis.
Collapse
Affiliation(s)
- Yanshuang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, 200030, Shanghai, China
| | - Tingyu Wu
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, 200030, Shanghai, China
| | - Yuting Wang
- Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, 200030, Shanghai, China
| | - Zhuo Chen
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, 200030, Shanghai, China
| | - Jiachen Chen
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, 200030, Shanghai, China
| | - Shun Lu
- Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, 200030, Shanghai, China
| | - Weiliang Xia
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, 200030, Shanghai, China.
| |
Collapse
|
7
|
Li Y, Chen X, Huang H, Liao L, Chong H, Li G, Yuan T, Lu W, Deng S, Huang Q. A feedback loop between NONHSAT024276 and PTBP1 inhibits tumor progression and glycolysis in HCC by increasing the PKM1/PKM2 ratio. Cancer Sci 2022; 114:1519-1540. [PMID: 36529521 PMCID: PMC10067414 DOI: 10.1111/cas.15697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies with a hallmark of aberrant metabolism. The mechanism of long noncoding RNAs (lncRNAs) underlying the aggressive behaviors and glycolysis of HCC is poorly understood. In this study, we identified, via microarray, novel lncRNA NONHSAT024276 as a potential tumor suppressor in HCC. The downregulation of NONHSAT024276 closely correlated with larger tumor volume and higher aspartate transaminase levels. Functional experiments were performed to verify the role of NONHSAT024276 in HCC progression, and the negative effects of NONHSAT024276 expression on cell proliferation and migration were identified. Mechanistically, NONHSAT024276 directly bound to polypyrimidine tract-binding protein 1 (PTBP1), downregulating it and forming a feedback loop. Furthermore, NONHSAT024276 increased the ratio of M1 and M2 isoforms of pyruvate kinase (PKM1/PKM2) and also obstructed the PTBP1/PKM-mediated glycolysis. Finally, the rescue assays confirmed that NONHSAT024276 functioned in HCC via downregulating PTBP1 to increase the PKM1/PKM2 ratio. Hence, this study supported a model in which NONHSAT024276 downregulated PTBP1 and formed a feedback loop to increase the PKM1/PKM2 ratio to inhibit glycolysis and progression of HCC, opening new prospects for preventing or treating HCC.
Collapse
Affiliation(s)
- Yuwei Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xia Chen
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hengliu Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ling Liao
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huimin Chong
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangyao Li
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tao Yuan
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weiping Lu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shaoli Deng
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|