1
|
Salhotra A, Yuan S, Ali H. Fifty years of BMT: risk stratification, donor matching, and stem cell collection for transplantation. Front Oncol 2023; 13:1196564. [PMID: 37700828 PMCID: PMC10493308 DOI: 10.3389/fonc.2023.1196564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/07/2023] [Indexed: 09/14/2023] Open
Abstract
In this review, we discuss recipient risk assessment for allo-HCT regarding comorbidities present at baseline to predict non relapse mortality. We further reviewed the incorporation of remission status and cytogenetic risk prior to allograft transplantation to predict relapse rates for hematologic malignancies. HCT-CI and DRI are tools available to physicians to assess the risk-benefit of allo-HCT in patients referred for transplantation. Next, we discuss our algorithm for donor selection and criteria for donor selection in case matched donors are not available. Finally, we discuss our approach for stem cell mobilization, especially in donors failing G-CSF, and our approach for the use of plerixafor and data supporting its use.
Collapse
Affiliation(s)
- Amandeep Salhotra
- Department of Hematology and Hematopoietic Cell Transplantation (HCT), City of Hope National Medical Center, Duarte, CA, United States
| | - Shan Yuan
- Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Haris Ali
- Department of Hematology and Hematopoietic Cell Transplantation (HCT), City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
2
|
Hao C, Ladbury C, Wong J, Dandapani S. Modern Radiation for Hematologic Stem Cell Transplantation: Total Marrow and Lymphoid Irradiation or Intensity-Modulated Radiation Therapy Total Body Irradiation. Surg Oncol Clin N Am 2023; 32:475-495. [PMID: 37182988 DOI: 10.1016/j.soc.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The development of large-field intensity-modulated radiation therapy (IMRT) has enabled the implementation of total marrow irradiation (TMI), total marrow and lymphoid irradiation (TMLI), and IMRT total body irradiation (TBI). IMRT TBI limits doses to organs at risk, primarily the lungs and in some cases the kidneys and lenses, which may mitigate complications. TMI/TMLI allows for dose escalation above TBI radiation therapy doses to malignant sites while still sparing organs at risk. Although still sparingly used, these techniques have established feasibility and demonstrated promise in reducing the adverse effects of TBI while maintaining and potentially improving survival outcomes.
Collapse
Affiliation(s)
- Claire Hao
- Department of Radiation Oncology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Colton Ladbury
- Department of Radiation Oncology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Jeffrey Wong
- Department of Radiation Oncology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Savita Dandapani
- Department of Radiation Oncology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
3
|
Wong JY, Liu A, Han C, Dandapani S, Schultheiss T, Palmer J, Yang D, Somlo G, Salhotra A, Hui S, Al Malki MM, Rosenthal J, Stein A. Total marrow irradiation (TMI): Addressing an unmet need in hematopoietic cell transplantation - a single institution experience review. Front Oncol 2022; 12:1003908. [PMID: 36263219 PMCID: PMC9574324 DOI: 10.3389/fonc.2022.1003908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose TMI utilizes IMRT to deliver organ sparing targeted radiotherapy in patients undergoing hematopoietic cell transplantation (HCT). TMI addresses an unmet need, specifically patients with refractory or relapsed (R/R) hematologic malignancies who have poor outcomes with standard HCT regimens and where attempts to improve outcomes by adding or dose escalating TBI are not possible due to increased toxicities. Over 500 patients have received TMI at this center. This review summarizes this experience including planning and delivery, clinical results, and future directions. Methods Patients were treated on prospective allogeneic HCT trials using helical tomographic or VMAT IMRT delivery. Target structures included the bone/marrow only (TMI), or the addition of lymph nodes, and spleen (total marrow and lymphoid irradiation, TMLI). Total dose ranged from 12 to 20 Gy at 1.5-2.0 Gy fractions twice daily. Results Trials demonstrate engraftment in all patients and a low incidence of radiation related toxicities and extramedullary relapses. In R/R acute leukemia TMLI 20 Gy, etoposide, and cyclophosphamide (Cy) results in a 1-year non-relapse mortality (NRM) rate of 6% and 2-year overall survival (OS) of 48%; TMLI 12 Gy added to fludarabine (flu) and melphalan (mel) in older patients (≥ 60 years old) results in a NRM rate of 33% comparable to flu/mel alone, and 5-year OS of 42%; and TMLI 20 Gy/flu/Cy and post-transplant Cy (PTCy) in haplo-identical HCT results in a 2-year NRM rate of 13% and 1-year OS of 83%. In AML in complete remission, TMLI 20 Gy and PTCy results in 2-year NRM, OS, and GVHD free/relapse-free survival (GRFS) rates of 0%, 86·7%, and 59.3%, respectively. Conclusion TMI/TMLI shows significant promise, low NRM rates, the ability to offer myeloablative radiation containing regimens to older patients, the ability to dose escalate, and response and survival rates that compare favorably to published results. Collaboration between radiation oncology and hematology is key to successful implementation. TMI/TMLI represents a paradigm shift from TBI towards novel strategies to integrate a safer and more effective target-specific radiation therapy into HCT conditioning beyond what is possible with TBI and will help expand and redefine the role of radiotherapy in HCT.
Collapse
Affiliation(s)
- Jeffrey Y.C. Wong
- Departments of Radiation Oncology, City of Hope, Duarte, CA, United States
| | - An Liu
- Departments of Radiation Oncology, City of Hope, Duarte, CA, United States
| | - Chunhui Han
- Departments of Radiation Oncology, City of Hope, Duarte, CA, United States
| | - Savita Dandapani
- Departments of Radiation Oncology, City of Hope, Duarte, CA, United States
| | | | - Joycelynne Palmer
- Department Computational and Quantitative Medicine, City of Hope, Duarte, CA, United States
| | - Dongyun Yang
- Department Computational and Quantitative Medicine, City of Hope, Duarte, CA, United States
| | - George Somlo
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Amandeep Salhotra
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Susanta Hui
- Departments of Radiation Oncology, City of Hope, Duarte, CA, United States
| | - Monzr M. Al Malki
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Joseph Rosenthal
- Department of Pediatrics, City of Hope, Duarte, CA, United States
| | - Anthony Stein
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| |
Collapse
|