1
|
Morente-López M, Mato-Basalo R, Lucio-Gallego S, Gil C, Carrera M, Fafián-Labora JA, Mateos J, Arufe MC. Effect of miR-21 in mesenchymal stem cells-derived extracellular vesicles behavior. Stem Cell Res Ther 2023; 14:383. [PMID: 38129923 PMCID: PMC10740217 DOI: 10.1186/s13287-023-03613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND A challenging new branch of research related to aging-associated diseases is the identification of miRNAs capable of modulating the senescence-associated secretory phenotype (SASP) which characterizes senescent cells and contributes to driving inflammation. METHODS Mesenchymal stem cells (MSC) from human umbilical cord stroma were stable modified using lentivirus transduction to inhibit miR-21-5p and shotgun proteomic analysis was performed in the MSC-derived extracellular vesicles (EV) to check the effect of miR-21 inhibition in their protein cargo. Besides, we studied the paracrine effect of those modified extracellular vesicles and also their effect on SASP. RESULTS Syndecan-1 (SDC1) was the most decreased protein in MSC-miR21--derived EV, and it was involved in inflammation and EV production. MSC-miR21--derived EV were found to produce a statistically significant inhibitory effect on SASP and inflammaging markers expression in receptor cells, and in the opposite way, these receptor cells increased their SASP and inflammaging expression statistically significantly when treated with MSC-miR-21+-derived EV. CONCLUSION This work demonstrates the importance of miR-21 in inflammaging and its role in SASP through SDC1.
Collapse
Affiliation(s)
- Miriam Morente-López
- Grupo de Terapia Celular y Medicina Regenerativa, Dpto. de Fisioterapia, Medicina y Ciencias Biomédicas. Facultad de Ciencias de la Salud, Universidade da Coruña, INIBIC-CHUAC, CICA, 15006, A Coruña, Spain
| | - Rocio Mato-Basalo
- Grupo de Terapia Celular y Medicina Regenerativa, Dpto. de Fisioterapia, Medicina y Ciencias Biomédicas. Facultad de Ciencias de la Salud, Universidade da Coruña, INIBIC-CHUAC, CICA, 15006, A Coruña, Spain
| | - Sergio Lucio-Gallego
- Grupo de Terapia Celular y Medicina Regenerativa, Dpto. de Fisioterapia, Medicina y Ciencias Biomédicas. Facultad de Ciencias de la Salud, Universidade da Coruña, INIBIC-CHUAC, CICA, 15006, A Coruña, Spain
| | - Concha Gil
- Proteomics Facility-Complutense University and Scientific Park Foundation of Madrid, Madrid, Spain
| | - Mónica Carrera
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Juan A Fafián-Labora
- Grupo de Terapia Celular y Medicina Regenerativa, Dpto. de Fisioterapia, Medicina y Ciencias Biomédicas. Facultad de Ciencias de la Salud, Universidade da Coruña, INIBIC-CHUAC, CICA, 15006, A Coruña, Spain
| | - Jesús Mateos
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706, Santiago de Compostela, Spain.
| | - María C Arufe
- Grupo de Terapia Celular y Medicina Regenerativa, Dpto. de Fisioterapia, Medicina y Ciencias Biomédicas. Facultad de Ciencias de la Salud, Universidade da Coruña, INIBIC-CHUAC, CICA, 15006, A Coruña, Spain.
| |
Collapse
|
2
|
Hassan N, Bückreiß N, Efing J, Schulz-Fincke M, König P, Greve B, Bendas G, Götte M. The Heparan Sulfate Proteoglycan Syndecan-1 Triggers Breast Cancer Cell-Induced Coagulability by Induced Expression of Tissue Factor. Cells 2023; 12:cells12060910. [PMID: 36980251 PMCID: PMC10047229 DOI: 10.3390/cells12060910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Syndecan-1 (Sdc-1) upregulation is associated with poor prognosis in breast cancer. Sdc-1 knockdown results in reduced angiogenesis and the dysregulation of tissue factor (TF) pathway constituents. Here, we evaluate the regulatory mechanisms and functional consequences of the Sdc-1/TF-axis using Sdc-1 knockdown and overexpression approaches in MCF-7 and MDA-MB-231 breast cancer cells. Gene expression was analyzed by means of qPCR. Thrombin generation and cell migration were detected. Cell-cycle progression and apoptosis were investigated using flow cytometry. In MDA-MB-231 cells, IL6, IL8, VEGF, and IGFR-dependent signaling affected TF pathway expression depending on Sdc-1. Notably, Sdc-1 depletion and TF pathway inhibitor (TFPI) synergistically affected PTEN, MAPK, and STAT3 signaling. At the functional level, the antiproliferative and pro-apoptotic effects of TFPI depended on Sdc-1, whereas Sdc-1’s modulation of cell motility was not affected by TFPI. Sdc-1 overexpression in MCF-7 and MDA-MB-231 cells led to increased TF expression, inducing a procoagulative phenotype, as indicated by the activation of human platelets and increased thrombin formation. A novel understanding of the functional interplay between Sdc-1 and the TF pathway may be compatible with the classical co-receptor role of Sdc-1 in cytokine signaling. This opens up the possibility of a new functional understanding, with Sdc-1 fostering coagulation and platelet communication as the key to the hematogenous metastatic spread of breast cancer cells.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Nico Bückreiß
- Pharmaceutical Department, University Bonn, An der Immenburg 4, 53225 Bonn, Germany
| | - Janes Efing
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Marie Schulz-Fincke
- Pharmaceutical Department, University Bonn, An der Immenburg 4, 53225 Bonn, Germany
| | - Philipp König
- Pharmaceutical Department, University Bonn, An der Immenburg 4, 53225 Bonn, Germany
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Gerd Bendas
- Pharmaceutical Department, University Bonn, An der Immenburg 4, 53225 Bonn, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Correspondence:
| |
Collapse
|
3
|
Pfeifer V, Weber H, Wang Y, Schlesinger M, Gorzelanny C, Bendas G. Exostosin 1 Knockdown Induces Chemoresistance in MV3 Melanoma Cells by Upregulating JNK and MEK/ERK Signaling. Int J Mol Sci 2023; 24:ijms24065452. [PMID: 36982528 PMCID: PMC10049486 DOI: 10.3390/ijms24065452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) possess various functions driving malignancy of tumors. However, their impact on tumor cell sensitivity to cytotoxic treatment is far less understood. Aiming to investigate this, we depleted HSPGs by downregulating Exostosin 1 (EXT1), a key enzyme in HS formation, or upregulating heparanase in human MV3 human melanoma cells, and investigated their response to cytotoxic drugs. Cytotoxicity of trametinib, doxorubicin, and mitoxantrone was detected by MTT assay. Insights into intracellular signaling was provided by kinome protein profiler array, and selected kinases were inhibited to investigate their impact on cell sensitization and migratory dynamics. EXT1 knockdown (EXT1kd) in MV3 cells affected the activity of doxorubicin and mitoxantrone, significantly increasing EC50 values two- or fourfold, respectively. Resistance formation was scarcely related to HSPG deficiency, suggested by enzymatic cleavage of HSPG in control cells. Notably, EXT1kd induced an upregulation of EGFR signaling via JNK and MEK/ERK, and hence blocking these kinases returned resistance to a sensitive level. JNK appeared as a key signal component, also inducing higher migratory activity of EXT1kd cells. Furthermore, EXT1kd upregulated thrombotic properties of MV3 cells, indicated by tissue factor and PAR-1 expression, functionally reflected by a stronger activation of platelet aggregation. EXT1 was confirmed to act as a tumor suppressor, shown here for the first time to affect chemosensitivity of melanoma cells.
Collapse
Affiliation(s)
- Vladlena Pfeifer
- Pharmaceutical Department, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Heiko Weber
- Pharmaceutical Department, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Yuanyuan Wang
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246 Hamburg, Germany
| | - Martin Schlesinger
- Pharmaceutical Department, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Federal Institute for Drugs and Medical Devices (BfArM), 53175 Bonn, Germany
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246 Hamburg, Germany
| | - Gerd Bendas
- Pharmaceutical Department, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Correspondence: ; Tel.: +49-228-735250
| |
Collapse
|
4
|
Kines RC, Schiller JT. Harnessing Human Papillomavirus' Natural Tropism to Target Tumors. Viruses 2022; 14:1656. [PMID: 36016277 PMCID: PMC9413966 DOI: 10.3390/v14081656] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) are small non-enveloped DNA tumor viruses established as the primary etiological agent for the development of cervical cancer. Decades of research have elucidated HPV's primary attachment factor to be heparan sulfate proteoglycans (HSPG). Importantly, wounding and exposure of the epithelial basement membrane was found to be pivotal for efficient attachment and infection of HPV in vivo. Sulfation patterns on HSPG's become modified at the site of wounds as they serve an important role promoting tissue healing, cell proliferation and neovascularization and it is these modifications recognized by HPV. Analogous HSPG modification patterns can be found on tumor cells as they too require the aforementioned processes to grow and metastasize. Although targeting tumor associated HSPG is not a novel concept, the use of HPV to target and treat tumors has only been realized in recent years. The work herein describes how decades of basic HPV research has culminated in the rational design of an HPV-based virus-like infrared light activated dye conjugate for the treatment of choroidal melanoma.
Collapse
Affiliation(s)
| | - John T. Schiller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
| |
Collapse
|