1
|
Shafiei FS, Abroun S, Vahdat S, Rafiee M. Omics approaches: Role in acute myeloid leukemia biomarker discovery and therapy. Cancer Genet 2025; 292-293:14-26. [PMID: 39798496 DOI: 10.1016/j.cancergen.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults and has the highest fatality rate. Patients aged 65 and above exhibit the poorest prognosis, with a mere 30 % survival rate within one year. One important issue in optimizing outcomes for AML patients is their limited ability to predict responses to specific therapies, response duration, and likelihood of relapse. Despite rigorous therapeutic interventions, a significant proportion of patients experience relapse. Consequently, there is a pressing need to introduce new targets for therapy. Sequencing and biotechnology have come a long way in the last ten years. This has made it easier for many omics technologies, like genomics, transcriptomics, proteomics, and metabolomics, to study molecular mechanisms of AML. An integrative approach is necessary to understand a complex biological process fully and offers an important opportunity to understand the information underlying diseases. In this review, we studied papers published between 2010 and 2024 employing omics approaches encompassing diagnosis, prognosis, and risk stratification of AML. Finally, we discuss prospects and challenges in applying -omics technologies to the discovery of novel biomarkers and therapy targets. Our review may be helpful for omics researchers who want to study AML from different molecular aspects.
Collapse
Affiliation(s)
- Fatemeh Sadat Shafiei
- MSC student of Hematology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeid Abroun
- PhD in clinical Hematology, Professor of Hematology, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadaf Vahdat
- PhD of Medical Biotechnology, Assistant Professor, Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Rafiee
- PhD of Hematology, Assistant Professor, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Forte D, Pellegrino RM, Falvo P, Garcia-Gonzalez P, Alabed HBR, Maltoni F, Lombardi D, Bruno S, Barone M, Pasini F, Fabbri F, Vannini I, Donati B, Cristiano G, Sartor C, Ronzoni S, Ciarrocchi A, Buratta S, Urbanelli L, Emiliani C, Soverini S, Catani L, Bertolini F, Argüello RJ, Cavo M, Curti A. Parallel single-cell metabolic analysis and extracellular vesicle profiling reveal vulnerabilities with prognostic significance in acute myeloid leukemia. Nat Commun 2024; 15:10878. [PMID: 39738118 DOI: 10.1038/s41467-024-55231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34+(CD38low/-) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34+ AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes. Although CD34+ AML cells are highly dependent on glucose oxidation and glycolysis for energy, those from intermediate- and adverse-risk patients reveal increased mitochondrial dependence. Extracellular vesicles from AML are mainly enriched in stem cell markers and express antioxidant GPX3, with their profiles showing potential prognostic value. Extracellular vesicles enhance mitochondrial functionality and dependence on CD34+ AML cells via the glutathione/GPX4 axis. Notably, extracellular vesicles from adverse-risk patients enhance leukemia cell engraftment in vivo. Here, we show a potential noninvasive approach based on liquid 'cell-extracellular vesicle' biopsy toward a redefined metabolic stratification in AML.
Collapse
Affiliation(s)
- Dorian Forte
- Department of Medical and Surgical Sciences, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences Section, University of Perugia, Perugia, Italy
| | - Paolo Falvo
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Paulina Garcia-Gonzalez
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Husam B R Alabed
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences Section, University of Perugia, Perugia, Italy
| | - Filippo Maltoni
- Department of Medical and Surgical Sciences, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Davide Lombardi
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Samantha Bruno
- Department of Medical and Surgical Sciences, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Martina Barone
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Federico Pasini
- Department of Medical and Surgical Sciences, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Ivan Vannini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Gianluca Cristiano
- Department of Medical and Surgical Sciences, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Chiara Sartor
- Department of Medical and Surgical Sciences, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Simona Ronzoni
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milano, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences Section, University of Perugia, Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences Section, University of Perugia, Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences Section, University of Perugia, Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Perugia, Italy
| | - Simona Soverini
- Department of Medical and Surgical Sciences, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Lucia Catani
- Department of Medical and Surgical Sciences, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Rafael José Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Michele Cavo
- Department of Medical and Surgical Sciences, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Antonio Curti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy.
| |
Collapse
|
3
|
Bakhtiari M, Jordan SC, Mumme HL, Sharma R, Shanmugam M, Bhasin SS, Bhasin M. ARMH1 is a novel marker associated with poor pediatric AML outcomes that affect the fatty acid synthesis and cell cycle pathways. Front Oncol 2024; 14:1445173. [PMID: 39703843 PMCID: PMC11655347 DOI: 10.3389/fonc.2024.1445173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Despite remarkable progress in Pediatric Acute Myeloid Leukemia (pAML) treatments, the relapsed disease remains difficult to treat, making it pertinent to identify novel biomarkers of prognostic/therapeutic significance. Material and methods Bone marrow samples from 21 pAML patients were analyzed using single cell RNA sequencing, functional assays with ARMH1 knockdown and overexpression were performed in leukemia cell lines to evaluate impact on proliferation and migration, and chemotherapy sensitivity. Mitochondrial function was assessed via Seahorse assay, ARMH1 interacting proteins were studied using co-immunoprecipitation. Bulk RNA-seq was performed on ARMH1knockdown and over expressing cell lines to evaluate the pathways and networks impacted by ARMH1. Results Our data shows that ARMH1, a novel cancer-associated gene, is highly expressed in the malignant blast cells of multiple pediatric hematologic malignancies, including AML, T/B-ALL, and T/B-MPAL. Notably, ARMH1 expression is significantly elevated in blast cells of patients who relapsed or have a high-risk cytogenetic profile (MLL) compared to standard-risk (RUNX1, inv (16)). ARMH1 expression is also significantly correlated with the pediatric leukemia stem cell score of 6 genes (LSC6) associated with poor outcomes. Perturbation of ARMH1 (knockdown and overexpression) in leukemia cell lines significantly impacted cell proliferation and migration. The RNA-sequencing analysis on multiple ARMH1 knockdown and overexpressing cell lines established an association with mitochondrial fatty acid synthesis and cell cycle pathways.The investigation of the mitochondrial matrix shows that pharmacological inhibition of a key enzyme in fatty acid synthesis regulation, CPT1A, resulted in ARMH1 downregulation. ARMH1 knockdown also led to a significant reduction in CPT1A and ATP production as well as Oxygen Consumption Rate. Our data indicates that downregulating ARMH1 impacts cell proliferation by reducing key cell cycle regulators such as CDCA7 and EZH2. Further, we also established that ARMH1 is a key physical interactant of EZH2, associated with multiple cancers. Conclusion Our findings underscore further evaluation of ARMH1 as a potential candidate for targeted therapies and stratification of aggressive pAML to improve outcomes.
Collapse
Affiliation(s)
- Mojtaba Bakhtiari
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
| | - Sean C. Jordan
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
| | - Hope L. Mumme
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
| | - Richa Sharma
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Swati S. Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Christensen NV, Laustsen C, Bertelsen LB. Differentiating leukemia subtypes based on metabolic signatures using hyperpolarized 13C NMR. NMR IN BIOMEDICINE 2024; 37:e5264. [PMID: 39319772 DOI: 10.1002/nbm.5264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Leukemia is a group of blood cancers that are classified in four major classes. Within these four classes, many different subtypes exists with similar origin, genetic mutations, and level of maturity, which can make them difficult to distinguish. Despite their similarities, they might respond differently to treatment, and therefore distinguishing between them is of crucial importance. A deranged metabolic phenotype (Warburg effect) is often seen in cancer cells, leukemia cells included, and is increasingly a target for improved diagnosis and treatment. In this study, hyperpolarized 13C NMR spectroscopy was used to characterize the metabolic signatures of the six leukemia cell lines ML-1, CCRF-CEM, THP-1, MOLT-4, HL-60, and K562. This was done using [1-13C]pyruvate and [1-13C]alanine as bioprobes for downstream metabolite quantification and kinetic analysis on cultured cells with and without 2-deoxy-D-glucose treatment. The metabolic signatures of similar leukemia subtypes could be readily distinguished. This includes ML-1 and THP-1, which are of the similar M4 and M5 AML subtypes, CCRF-CEM and MOLT-4, which are of the similar T-ALL lineage at different maturation states, and HL-60 and K562, which are of the closely related M1 and M2 AML subtypes. The data presented here demonstrate the potential of hyperpolarized 13C NMR spectroscopy as a method to differentiate between leukemia subtypes of similar origin. Combining this method with bioreactor setups could potentially allow for better leukemia disease management as metabolic signatures could be acquired from a single biopsy through repeated experimentation and intervention.
Collapse
Affiliation(s)
| | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
O'Brien C, Jones CL. Unraveling lipid metabolism for acute myeloid leukemia therapy. Curr Opin Hematol 2024:00062752-990000000-00096. [PMID: 39585293 DOI: 10.1097/moh.0000000000000853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
PURPOSE OF REVIEW The aim of this review is to highlight the importance of lipids' intricate and interwoven role in mediating diverse acute myeloid leukemia (AML) processes, as well as potentially novel lipid targeting strategies. This review will focus on new studies of lipid metabolism in human leukemia, particularly highlighting work in leukemic stem cells (LSCs), where lipids were assessed directly as a metabolite. RECENT FINDINGS Lipid metabolism is essential to support LSC function and AML survival through diverse mechanisms including supporting energy production, membrane composition, signaling pathways, and ferroptosis. Recent work has highlighted the role of lipid rewiring in metabolic plasticity which can underlie therapy response, the impact of cellular and genetic heterogeneity in AML on lipid metabolism, and the discovery of noncanonical roles of lipid related proteins in AML. SUMMARY Recent findings around lipid metabolism clearly demonstrates their importance to our understanding and therapeutic targeting of AML. We have only begun to unravel the regulation and utilization of lipids in this disease. Further, understanding the layered dynamics of lipid homeostasis could provide novel opportunities to target lipid metabolism in AML and LSCs with the potential of improving outcomes for patients with AML.
Collapse
Affiliation(s)
- Cristiana O'Brien
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Courtney L Jones
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
6
|
Tian Y, Guo J, Mao L, Chen Z, Zhang X, Li Y, Zhang Y, Zha X, Luo OJ. Single-cell dissection reveals promotive role of ENO1 in leukemia stem cell self-renewal and chemoresistance in acute myeloid leukemia. Stem Cell Res Ther 2024; 15:347. [PMID: 39380054 PMCID: PMC11463110 DOI: 10.1186/s13287-024-03969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Quiescent self-renewal of leukemia stem cells (LSCs) and resistance to conventional chemotherapy are the main factors leading to relapse of acute myeloid leukemia (AML). Alpha-enolase (ENO1), a key glycolytic enzyme, has been shown to regulate embryonic stem cell differentiation and promote self-renewal and malignant phenotypes in various cancer stem cells. Here, we sought to test whether and how ENO1 influences LSCs renewal and chemoresistance within the context of AML. METHODS We analyzed single-cell RNA sequencing data from bone marrow samples of 8 relapsed/refractory AML patients and 4 healthy controls using bioinformatics and machine learning algorithms. In addition, we compared ENO1 expression levels in the AML cohort with those in 37 control subjects and conducted survival analyses to correlate ENO1 expression with clinical outcomes. Furthermore, we performed functional studies involving ENO1 knockdown and inhibition in AML cell line. RESULTS We used machine learning to model and infer malignant cells in AML, finding more primitive malignant cells in the non-response (NR) group. The differentiation capacity of LSCs and progenitor malignant cells exhibited an inverse correlation with glycolysis levels. Trajectory analysis indicated delayed myeloid cell differentiation in NR group, with high ENO1-expressing LSCs at the initial stages of differentiation being preserved post-treatment. Simultaneously, ENO1 and stemness-related genes were upregulated and co-expressed in malignant cells during early differentiation. ENO1 level in our AML cohort was significantly higher than the controls, with higher levels in NR compared to those in complete remission. Knockdown of ENO1 in AML cell line resulted in the activation of LSCs, promoting cell differentiation and apoptosis, and inhibited proliferation. ENO1 inhibitor can impede the proliferation of AML cells. Furthermore, survival analyses associated higher ENO1 expression with poorer outcome in AML patients. CONCLUSIONS Our findings underscore the critical role of ENO1 as a plausible driver of LSC self-renewal, a potential target for AML target therapy and a biomarker for AML prognosis.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Phosphopyruvate Hydratase/metabolism
- Phosphopyruvate Hydratase/genetics
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Tumor Suppressor Proteins/metabolism
- Tumor Suppressor Proteins/genetics
- Female
- Drug Resistance, Neoplasm
- Single-Cell Analysis
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/genetics
- Male
- Middle Aged
- Cell Self Renewal
- Adult
- Cell Line, Tumor
- Cell Differentiation
- Aged
- Biomarkers, Tumor
Collapse
Affiliation(s)
- Yun Tian
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou, 510632, China
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiafan Guo
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Lipeng Mao
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhixi Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou, 510632, China
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Xingwei Zhang
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou, 510632, China.
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Yikai Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou, 510632, China.
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
7
|
Schauner R, Cress J, Hong C, Wald D, Ramakrishnan P. Single cell and bulk RNA expression analyses identify enhanced hexosamine biosynthetic pathway and O-GlcNAcylation in acute myeloid leukemia blasts and stem cells. Front Immunol 2024; 15:1327405. [PMID: 38601153 PMCID: PMC11004450 DOI: 10.3389/fimmu.2024.1327405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Acute myeloid leukemia (AML) is the most common acute leukemia in adults with an overall poor prognosis and high relapse rate. Multiple factors including genetic abnormalities, differentiation defects and altered cellular metabolism contribute to AML development and progression. Though the roles of oxidative phosphorylation and glycolysis are defined in AML, the role of the hexosamine biosynthetic pathway (HBP), which regulates the O-GlcNAcylation of cytoplasmic and nuclear proteins, remains poorly defined. Methods We studied the expression of the key enzymes involved in the HBP in AML blasts and stem cells by RNA sequencing at the single-cell and bulk level. We performed flow cytometry to study OGT protein expression and global O-GlcNAcylation. We studied the functional effects of inhibiting O-GlcNAcylation on transcriptional activation in AML cells by Western blotting and real time PCR and on cell cycle by flow cytometry. Results We found higher expression levels of the key enzymes in the HBP in AML as compared to healthy donors in whole blood. We observed elevated O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA) expression in AML stem and bulk cells as compared to normal hematopoietic stem and progenitor cells (HSPCs). We also found that both AML bulk cells and stem cells show significantly enhanced OGT protein expression and global O-GlcNAcylation as compared to normal HSPCs, validating our in silico findings. Gene set analysis showed substantial enrichment of the NF-κB pathway in AML cells expressing high OGT levels. Inhibition of O-GlcNAcylation decreased NF-κB nuclear translocation and the expression of selected NF-κB-dependent genes controlling cell cycle. It also blocked cell cycle progression suggesting a link between enhanced O-GlcNAcylation and NF-κB activation in AML cell survival and proliferation. Discussion Our study suggests the HBP may prove a potential target, alone or in combination with other therapeutic approaches, to impact both AML blasts and stem cells. Moreover, as insufficient targeting of AML stem cells by traditional chemotherapy is thought to lead to relapse, blocking HBP and O-GlcNAcylation in AML stem cells may represent a novel promising target to control relapse.
Collapse
Affiliation(s)
- Robert Schauner
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, United States
| | - Jordan Cress
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Changjin Hong
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, United States
| | - David Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
8
|
Pereira-Vieira J, Weber DD, Silva S, Barbosa-Matos C, Granja S, Reis RM, Queirós O, Ko YH, Kofler B, Casal M, Baltazar F. Glucose Metabolism as a Potential Therapeutic Target in Cytarabine-Resistant Acute Myeloid Leukemia. Pharmaceutics 2024; 16:442. [PMID: 38675105 PMCID: PMC11055074 DOI: 10.3390/pharmaceutics16040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Altered glycolytic metabolism has been associated with chemoresistance in acute myeloid leukemia (AML). However, there are still aspects that need clarification, as well as how to explore these metabolic alterations in therapy. In the present study, we aimed to elucidate the role of glucose metabolism in the acquired resistance of AML cells to cytarabine (Ara-C) and to explore it as a therapeutic target. Resistance was induced by stepwise exposure of AML cells to increasing concentrations of Ara-C. Ara-C-resistant cells were characterized for their growth capacity, genetic alterations, metabolic profile, and sensitivity to different metabolic inhibitors. Ara-C-resistant AML cell lines, KG-1 Ara-R, and MOLM13 Ara-R presented different metabolic profiles. KG-1 Ara-R cells exhibited a more pronounced glycolytic phenotype than parental cells, with a weaker acute response to 3-bromopyruvate (3-BP) but higher sensitivity after 48 h. KG-1 Ara-R cells also display increased respiration rates and are more sensitive to phenformin than parental cells. On the other hand, MOLM13 Ara-R cells display a glucose metabolism profile similar to parental cells, as well as sensitivity to glycolytic inhibitors. These results indicate that acquired resistance to Ara-C in AML may involve metabolic adaptations, which can be explored therapeutically in the AML patient setting who developed resistance to therapy.
Collapse
Affiliation(s)
- Joana Pereira-Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (J.P.-V.); (C.B.-M.); (S.G.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (D.D.W.); (B.K.)
| | - Sâmia Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil;
| | - Catarina Barbosa-Matos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (J.P.-V.); (C.B.-M.); (S.G.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (J.P.-V.); (C.B.-M.); (S.G.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Pathological, Cytological and Thanatological Anatomy, ESS|P.PORTO, 4200-072 Porto, Portugal
- REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (J.P.-V.); (C.B.-M.); (S.G.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil;
| | - Odília Queirós
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
| | - Young H. Ko
- KoDiscovery, LLC, Institute of Marine and Environmental Technology (IMET) Center, 701 East Pratt Street, Baltimore, MD 21202, USA;
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (D.D.W.); (B.K.)
| | - Margarida Casal
- Center of Molecular and Environmental Biology (CBMA), University of Minho, 4710-057 Braga, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (J.P.-V.); (C.B.-M.); (S.G.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
9
|
Burk AC, Apostolova P. Metabolic instruction of the graft-versus-leukemia immunity. Front Immunol 2024; 15:1347492. [PMID: 38500877 PMCID: PMC10944922 DOI: 10.3389/fimmu.2024.1347492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is frequently performed to cure hematological malignancies, such as acute myeloid leukemia (AML), through the graft-versus-leukemia (GVL) effect. In this immunological process, donor immune cells eliminate residual cancer cells in the patient and exert tumor control through immunosurveillance. However, GVL failure and subsequent leukemia relapse are frequent and associated with a dismal prognosis. A better understanding of the mechanisms underlying AML immune evasion is essential for developing novel therapeutic strategies to boost the GVL effect. Cellular metabolism has emerged as an essential regulator of survival and cell fate for both cancer and immune cells. Leukemia and T cells utilize specific metabolic programs, including the orchestrated use of glucose, amino acids, and fatty acids, to support their growth and function. Besides regulating cell-intrinsic processes, metabolism shapes the extracellular environment and plays an important role in cell-cell communication. This review focuses on recent advances in the understanding of how metabolism might affect the anti-leukemia immune response. First, we provide a general overview of the mechanisms of immune escape after allo-HCT and an introduction to leukemia and T cell metabolism. Further, we discuss how leukemia and myeloid cell metabolism contribute to an altered microenvironment that impairs T cell function. Next, we review the literature linking metabolic processes in AML cells with their inhibitory checkpoint ligand expression. Finally, we focus on recent findings concerning the role of systemic metabolism in sustained GVL efficacy. While the majority of evidence in the field still stems from basic and preclinical studies, we discuss translational findings and propose further avenues for bridging the gap between bench and bedside.
Collapse
Affiliation(s)
- Ann-Cathrin Burk
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Petya Apostolova
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
10
|
Lu Q, Qu W, Wen Y, Ke P, Zhao L, Wang Q, Chen S, Zeng Z. Single-cell RNA-seq reveals the links between the metabolic heterogeneity and cell identity in NBM and AML. Br J Haematol 2024; 204:1100-1104. [PMID: 38009537 DOI: 10.1111/bjh.19233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Affiliation(s)
- Qiongyu Lu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Wenqiang Qu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Yuxin Wen
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Ke
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Luyao Zhao
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Qingyuan Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Zhao Zeng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
11
|
Jang Y, Koh JS, Park JH, Choi S, Duong PTT, Heo BY, Lee SW, Kim JY, Lee MW, Kim SH, Song IC. Enhanced Expression of Glycolytic Enzymes and Succinate Dehydrogenase Complex Flavoprotein Subunit A by Mesothelin Promotes Glycolysis and Mitochondrial Respiration in Myeloblasts of Acute Myeloid Leukemia. Int J Mol Sci 2024; 25:2140. [PMID: 38396817 PMCID: PMC10888725 DOI: 10.3390/ijms25042140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy characterized by rapid growth and uncontrolled proliferation of undifferentiated myeloid cells. Metabolic reprogramming is commonly observed in the bone marrow of AML patients, as leukemia cells require increased ATP supply to support disease progression. In this study, we examined the potential role of mesothelin as a metabolic modulator in myeloid cells in AML. Mesothelin is a well-known marker of solid tumors that promotes cancer cell proliferation and survival. We initially analyzed alterations in mesothelin expression in the myeloblast subpopulations, defined as SSC-Alow/CD45dim, obtained from the bone marrow of AML patients using flow cytometry. Our results showed overexpression of mesothelin in 34.8% of AML patients. Subsequently, metabolic changes in leukemia cells were evaluated by comparing the oxygen consumption rates (OCR) of bone marrow samples derived from adult AML patients. Notably, a higher OCR was observed in the mesothelin-positive compared to the mesothelin-low and non-expressing groups. Treatment with recombinant human mesothelin protein enhanced OCR and increased the mRNA expression of glycolytic enzymes and mitochondrial complex II in KG1α AML cells. Notably, siRNA targeting mesothelin in KG1α cells led to the reduction of glycolysis-related gene expression but had no effect on the mitochondrial complex gene. The collective results demonstrate that mesothelin induces metabolic changes in leukemia cells, facilitating the acquisition of a rapid supply of ATP for proliferation in AML. Therefore, the targeting of mesothelin presents a potentially promising approach to mitigating the progression of AML through the inhibition of glycolysis and mitochondrial respiration in myeloid cells.
Collapse
Affiliation(s)
- Yunseon Jang
- Translational Immunology Institute, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jeong Suk Koh
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Jung-Hyun Park
- Translational Immunology Institute, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Suyoung Choi
- Brain Korea 21 FOUR Project for Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Pham Thi Thuy Duong
- Brain Korea 21 FOUR Project for Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Bu Yeon Heo
- Brain Korea 21 FOUR Project for Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Sang Woo Lee
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jung Yeon Kim
- Research Institute for Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Myung-Won Lee
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Seok-Hwan Kim
- Research Institute for Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Surgery, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Ik-Chan Song
- Translational Immunology Institute, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| |
Collapse
|
12
|
Humphries S, Bond DR, Germon ZP, Keely S, Enjeti AK, Dun MD, Lee HJ. Crosstalk between DNA methylation and hypoxia in acute myeloid leukaemia. Clin Epigenetics 2023; 15:150. [PMID: 37705055 PMCID: PMC10500762 DOI: 10.1186/s13148-023-01566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Acute myeloid leukaemia (AML) is a deadly disease characterised by the uncontrolled proliferation of immature myeloid cells within the bone marrow. Altered regulation of DNA methylation is an important epigenetic driver of AML, where the hypoxic bone marrow microenvironment can help facilitate leukaemogenesis. Thus, interactions between epigenetic regulation and hypoxia signalling will have important implications for AML development and treatment. MAIN BODY This review summarises the importance of DNA methylation and the hypoxic bone marrow microenvironment in the development, progression, and treatment of AML. Here, we focus on the role hypoxia plays on signalling and the subsequent regulation of DNA methylation. Hypoxia is likely to influence DNA methylation through altered metabolic pathways, transcriptional control of epigenetic regulators, and direct effects on the enzymatic activity of epigenetic modifiers. DNA methylation may also prevent activation of hypoxia-responsive genes, demonstrating bidirectional crosstalk between epigenetic regulation and the hypoxic microenvironment. Finally, we consider the clinical implications of these interactions, suggesting that reduced cell cycling within the hypoxic bone marrow may decrease the efficacy of hypomethylating agents. CONCLUSION Hypoxia is likely to influence AML progression through complex interactions with DNA methylation, where the therapeutic efficacy of hypomethylating agents may be limited within the hypoxic bone marrow. To achieve optimal outcomes for AML patients, future studies should therefore consider co-treatments that can promote cycling of AML cells within the bone marrow or encourage their dissociation from the bone marrow.
Collapse
Affiliation(s)
- Sam Humphries
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Danielle R Bond
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Zacary P Germon
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Anoop K Enjeti
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Department of Haematology, Calvary Mater Hospital, Waratah, NSW, 2298, Australia
- New South Wales Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Heather J Lee
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
13
|
Park MN. The Therapeutic Potential of a Strategy to Prevent Acute Myeloid Leukemia Stem Cell Reprogramming in Older Patients. Int J Mol Sci 2023; 24:12037. [PMID: 37569414 PMCID: PMC10418941 DOI: 10.3390/ijms241512037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common and incurable leukemia subtype. Despite extensive research into the disease's intricate molecular mechanisms, effective treatments or expanded diagnostic or prognostic markers for AML have not yet been identified. The morphological, immunophenotypic, cytogenetic, biomolecular, and clinical characteristics of AML patients are extensive and complex. Leukemia stem cells (LSCs) consist of hematopoietic stem cells (HSCs) and cancer cells transformed by a complex, finely-tuned interaction that causes the complexity of AML. Microenvironmental regulation of LSCs dormancy and the diagnostic and therapeutic implications for identifying and targeting LSCs due to their significance in the pathogenesis of AML are discussed in this review. It is essential to perceive the relationship between the niche for LSCs and HSCs, which together cause the progression of AML. Notably, methylation is a well-known epigenetic change that is significant in AML, and our data also reveal that microRNAs are a unique factor for LSCs. Multiple-targeted approaches to reduce the risk of epigenetic factors, such as the administration of natural compounds for the elimination of local LSCs, may prevent potentially fatal relapses. Furthermore, the survival analysis of overlapping genes revealed that specific targets had significant effects on the survival and prognosis of patients. We predict that the multiple-targeted effects of herbal products on epigenetic modification are governed by different mechanisms in AML and could prevent potentially fatal relapses. Thus, these strategies can facilitate the incorporation of herbal medicine and natural compounds into the advanced drug discovery and development processes achievable with Network Pharmacology research.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
14
|
Chianese U, Papulino C, Megchelenbrink W, Tambaro FP, Ciardiello F, Benedetti R, Altucci L. Epigenomic machinery regulating pediatric AML: clonal expansion mechanisms, therapies, and future perspectives. Semin Cancer Biol 2023; 92:84-101. [PMID: 37003397 DOI: 10.1016/j.semcancer.2023.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a genetic, epigenetic, and transcriptional etiology mainly presenting somatic and germline abnormalities. AML incidence rises with age but can also occur during childhood. Pediatric AML (pAML) accounts for 15-20% of all pediatric leukemias and differs considerably from adult AML. Next-generation sequencing technologies have enabled the research community to "paint" the genomic and epigenomic landscape in order to identify pathology-associated mutations and other prognostic biomarkers in pAML. Although current treatments have improved the prognosis for pAML, chemoresistance, recurrence, and refractory disease remain major challenges. In particular, pAML relapse is commonly caused by leukemia stem cells that resist therapy. Marked patient-to-patient heterogeneity is likely the primary reason why the same treatment is successful for some patients but, at best, only partially effective for others. Accumulating evidence indicates that patient-specific clonal composition impinges significantly on cellular processes, such as gene regulation and metabolism. Although our understanding of metabolism in pAML is still in its infancy, greater insights into these processes and their (epigenetic) modulation may pave the way toward novel treatment options. In this review, we summarize current knowledge on the function of genetic and epigenetic (mis)regulation in pAML, including metabolic features observed in the disease. Specifically, we describe how (epi)genetic machinery can affect chromatin status during hematopoiesis, leading to an altered metabolic profile, and focus on the potential value of targeting epigenetic abnormalities in precision and combination therapy for pAML. We also discuss the possibility of using alternative epidrug-based therapeutic approaches that are already in clinical practice, either alone as adjuvant treatments and/or in combination with other drugs.
Collapse
Affiliation(s)
- Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Chiara Papulino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Wout Megchelenbrink
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Princess Máxima Center, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.
| | - Francesco Paolo Tambaro
- Bone Marrow Transplant Unit, Pediatric Oncology Department AORN Santobono Pausilipon, 80129, Naples Italy.
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Biogem Institute of Molecular and Genetic Biology, 83031 Ariano Irpino, Italy; IEOS, Institute for Endocrinology and Oncology "Gaetano Salvatore" (IEOS), 80131 Naples, Italy.
| |
Collapse
|
15
|
Venugopal S, Xie Z, Zeidan AM. An overview of novel therapies in advanced clinical testing for acute myeloid leukemia. Expert Rev Hematol 2023; 16:109-119. [PMID: 36718500 DOI: 10.1080/17474086.2023.2174521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION The past decade has seen a sea change in the AML landscape with vastly improved cognizance of molecular pathogenesis, clonal evolution, and importance of measurable residual disease. Since 2017, the therapeutic armamentarium of AML has considerably expanded with the approval of midostaurin, enasidenib, ivosidenib, gilteritinib, and venetoclax in combination with hypomethylating agents and others. Nevertheless, relapse and treatment refractoriness remain the insurmountable challenges in AML therapy. This has galvanized the leukemic research community leading to the discovery and development of agents that specifically target gene mutations, molecularly agnostic therapies that exploit immune environment, apoptotic pathways, leukemic cell surface antigens and so forth. AREAS COVERED This article provides an overview of the pathophysiology of AML in the context of non-cellular immune and molecularly targeted and agnostic therapies that are in clinical trial development in AML. EXPERT OPINION Ever growing understanding of the molecular pathogenesis and metabolomics in AML has allowed the researchers to identify targets directed at specific genes and metabolic pathways. As a result, AML therapy is constantly evolving and so are the escape mechanisms leading to disease relapse. Therefore, it is of paramount importance to sequentially evaluate the patient during AML treatment and intervene at the right time.
Collapse
Affiliation(s)
- Sangeetha Venugopal
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, FL, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
16
|
Tabe Y, Konopleva M. Resistance to energy metabolism - targeted therapy of AML cells residual in the bone marrow microenvironment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:138-150. [PMID: 37065866 PMCID: PMC10099600 DOI: 10.20517/cdr.2022.133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/07/2023] [Accepted: 03/01/2023] [Indexed: 04/18/2023]
Abstract
In response to the changing availability of nutrients and oxygen in the bone marrow microenvironment, acute myeloid leukemia (AML) cells continuously adjust their metabolic state. To meet the biochemical demands of their increased proliferation, AML cells strongly depend on mitochondrial oxidative phosphorylation (OXPHOS). Recent data indicate that a subset of AML cells remains quiescent and survives through metabolic activation of fatty acid oxidation (FAO), which causes uncoupling of mitochondrial OXPHOS and facilitates chemoresistance. For targeting these metabolic vulnerabilities of AML cells, inhibitors of OXPHOS and FAO have been developed and investigated for their therapeutic potential. Recent experimental and clinical evidence has revealed that drug-resistant AML cells and leukemic stem cells rewire metabolic pathways through interaction with BM stromal cells, enabling them to acquire resistance against OXPHOS and FAO inhibitors. These acquired resistance mechanisms compensate for the metabolic targeting by inhibitors. Several chemotherapy/targeted therapy regimens in combination with OXPHOS and FAO inhibitors are under development to target these compensatory pathways.
Collapse
Affiliation(s)
- Yoko Tabe
- Department of Laboratory Medicine, Juntendo University, Tokyo 112-8421, Japan
- Department of Medicine (Oncology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marina Konopleva
- Department of Medicine (Oncology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence to: Prof. Marina Konopleva, Department of Medicine (Oncology) and Molecular Pharmacology, Albert Einstein College of Medicine and Montefiore Medical Center,1300 Morris Park Avenue, NY 10461, USA; Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA. E-mail:
| |
Collapse
|
17
|
Lipids and the cancer stemness regulatory system in acute myeloid leukemia. Essays Biochem 2022; 66:333-344. [PMID: 35996953 DOI: 10.1042/ebc20220028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease of impaired myeloid differentiation and a caricature of normal hematopoiesis. Leukemic stem cells (LSCs) are responsible for long-term clonal propagation in AML just as hematopoietic stem cells (HSCs) sustain lifelong hematopoiesis. LSCs are often resistant to standard chemotherapy and are responsible for clinical relapse. Although AML is highly heterogeneous, determinants of stemness are prognostic for AML patient survival and can predict AML drug sensitivity. Therefore, one way to overcome challenges preventing efficacious treatment outcomes is to target LSC stemness. Metabolomic and lipidomic studies of serum and cells from AML patients are emerging to complement genomic, transcriptomic, epigenetic, and proteomic data sets to characterize and stratify AML. Recent studies have shown the value of fractionating LSCs versus blasts when characterizing metabolic pathways and implicate the importance of lipid balance to LSCs function. As more extensive metabolic studies coupled to functional in vivo assays are conducted on highly purified HSCs, bulk AML, and LSCs, the similarities and differences in lipid homeostasis in stem-like versus more mature AML subtypes as well as from normal HSCs are emerging. Here, we discuss the latest findings from studies of lipid function in LSCs, with a focus on sphingolipids (SLs) as stemness/lineage fate mediators in AML, and the balance of fatty acid anabolism and catabolism fueling metabolic flexibility and drug resistance in AML. We also discuss how designing successful strategies to target lipid vulnerabilities and improve AML patient survival should take into consideration the hierarchical nature of AML.
Collapse
|
18
|
Properties of Leukemic Stem Cells in Regulating Drug Resistance in Acute and Chronic Myeloid Leukemias. Biomedicines 2022; 10:biomedicines10081841. [PMID: 36009388 PMCID: PMC9405586 DOI: 10.3390/biomedicines10081841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Notoriously known for their capacity to reconstitute hematological malignancies in vivo, leukemic stem cells (LSCs) represent key drivers of therapeutic resistance and disease relapse, posing as a major medical dilemma. Despite having low abundance in the bulk leukemic population, LSCs have developed unique molecular dependencies and intricate signaling networks to enable self-renewal, quiescence, and drug resistance. To illustrate the multi-dimensional landscape of LSC-mediated leukemogenesis, in this review, we present phenotypical characteristics of LSCs, address the LSC-associated leukemic stromal microenvironment, highlight molecular aberrations that occur in the transcriptome, epigenome, proteome, and metabolome of LSCs, and showcase promising novel therapeutic strategies that potentially target the molecular vulnerabilities of LSCs.
Collapse
|
19
|
Kelesoglu N, Kori M, Turanli B, Arga KY, Yilmaz BK, Duru OA. Acute Myeloid Leukemia: New Multiomics Molecular Signatures and Implications for Systems Medicine Diagnostics and Therapeutics Innovation. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:392-403. [PMID: 35763314 DOI: 10.1089/omi.2022.0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acute myeloid leukemia (AML) is a common, complex, and multifactorial malignancy of the hematopoietic system. AML diagnosis and treatment outcomes display marked heterogeneity and patient-to-patient variations. To date, AML-related biomarker discovery research has employed single omics inquiries. Multiomics analyses that reconcile and integrate the data streams from multiple levels of the cellular hierarchy, from genes to proteins to metabolites, offer much promise for innovation in AML diagnostics and therapeutics. We report, in this study, a systems medicine and multiomics approach to integrate the AML transcriptome data and reporter biomolecules at the RNA, protein, and metabolite levels using genome-scale biological networks. We utilized two independent transcriptome datasets (GSE5122, GSE8970) in the Gene Expression Omnibus database. We identified new multiomics molecular signatures of relevance to AML: miRNAs (e.g., mir-484 and miR-519d-3p), receptors (ACVR1 and PTPRG), transcription factors (PRDM14 and GATA3), and metabolites (in particular, amino acid derivatives). The differential expression profiles of all reporter biomolecules were crossvalidated in independent RNA-Seq and miRNA-Seq datasets. Notably, we found that PTPRG holds important prognostication potential as evaluated by Kaplan-Meier survival analyses. The multiomics relationships unraveled in this analysis point toward the genomic pathogenesis of AML. These multiomics molecular leads warrant further research and development as potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Nurdan Kelesoglu
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Medi Kori
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Beste Turanli
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Betul Karademir Yilmaz
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Ozlem Ates Duru
- Department of Nutrition and Dietetics, School of Health Sciences, Nişantaşı University, Istanbul, Turkey
| |
Collapse
|