1
|
van Timmeren JE, Bussink J, Koopmans P, Smeenk RJ, Monshouwer R. Longitudinal Image Data for Outcome Modeling. Clin Oncol (R Coll Radiol) 2025; 38:103610. [PMID: 39003124 DOI: 10.1016/j.clon.2024.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
In oncology, medical imaging is crucial for diagnosis, treatment planning and therapy execution. Treatment responses can be complex and varied and are known to involve factors of treatment, patient characteristics and tumor microenvironment. Longitudinal image analysis is able to track temporal changes, aiding in disease monitoring, treatment evaluation, and outcome prediction. This allows for the enhancement of personalized medicine. However, analyzing longitudinal 2D and 3D images presents unique challenges, including image registration, reliable segmentation, dealing with variable imaging intervals, and sparse data. This review presents an overview of techniques and methodologies in longitudinal image analysis, with a primary focus on outcome modeling in radiation oncology.
Collapse
Affiliation(s)
- J E van Timmeren
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - J Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - P Koopmans
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - R J Smeenk
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - R Monshouwer
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Adachi T, Nakamura M, Iwai T, Yoshimura M, Mizowaki T. Delta-Radiomics Approach Using Contrast-Enhanced and Noncontrast-Enhanced Computed Tomography Images for Predicting Distant Metastasis in Patients With Borderline Resectable Pancreatic Carcinoma. Adv Radiat Oncol 2025; 10:101669. [PMID: 39687476 PMCID: PMC11647472 DOI: 10.1016/j.adro.2024.101669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 10/21/2024] [Indexed: 12/18/2024] Open
Abstract
Purpose To predict distant metastasis (DM) in patients with borderline resectable pancreatic carcinoma using delta-radiomics features calculated from contrast-enhanced computed tomography (CECT) and non-CECT images. Methods and Materials Among 250 patients who underwent radiation therapy at our institution between February 2013 and December 2021, 67 patients were deemed eligible. A total of 11 clinical features and 3906 radiomics features were incorporated. Radiomics features were extracted from CECT and non-CECT images, and the differences between these features were calculated, resulting in delta-radiomics features. The patients were randomly divided into the training (70%) and test (30%) data sets for model development and validation. Predictive models were developed with clinical features (clinical model), radiomics features (radiomics model), and a combination of the abovementioned features (hybrid model) using Fine-Gray regression (FG) and random survival forest (RSF). Optimal hyperparameters were determined using stratified 5-fold cross-validation. Subsequently, the developed models were applied to the remaining test data sets, and the patients were divided into high- or low-risk groups based on their risk scores. Prognostic power was assessed using the concordance index, with 95% CIs obtained through 2000 bootstrapping iterations. Statistical significance between the above groups was assessed using Gray's test. Results At a median follow-up period of 23.8 months, 47 (70.1%) patients developed DM. The concordance indices of the FG-based clinical, radiomics, and hybrid models were 0.548, 0.603, and 0.623, respectively, in the test data set, whereas those of the RSF-based models were 0.598, 0.680, and 0.727, respectively. The RSF-based model, including delta-radiomics features, significantly divided the cumulative incidence curves into two risk groups (P < .05). The feature map of the gray-level size-zone matrix showed that the difference in feature values between CECT and non-CECT images correlated with the incidence of DM. Conclusions Delta-radiomics features obtained from CECT and non-CECT images using RSF successfully predict the incidence of DM in patients with borderline resectable pancreatic carcinoma.
Collapse
Affiliation(s)
- Takanori Adachi
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University, Shogoin, Sakyo-ku, Kyoto, Japan
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Takahiro Iwai
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Michio Yoshimura
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University, Shogoin, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
3
|
Nardone V, Reginelli A, Rubini D, Gagliardi F, Del Tufo S, Belfiore MP, Boldrini L, Desideri I, Cappabianca S. Delta radiomics: an updated systematic review. LA RADIOLOGIA MEDICA 2024; 129:1197-1214. [PMID: 39017760 PMCID: PMC11322237 DOI: 10.1007/s11547-024-01853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Radiomics can provide quantitative features from medical imaging that can be correlated with various biological features and diverse clinical endpoints. Delta radiomics, on the other hand, consists in the analysis of feature variation at different acquisition time points, usually before and after therapy. The aim of this study was to provide a systematic review of the different delta radiomics approaches. METHODS Eligible articles were searched in Embase, Pubmed, and ScienceDirect using a search string that included free text and/or Medical Subject Headings (MeSH) with 3 key search terms: 'radiomics,' 'texture,' and 'delta.' Studies were analyzed using QUADAS-2 and the RQS tool. RESULTS Forty-eight studies were finally included. The studies were divided into preclinical/methodological (5 studies, 10.4%); rectal cancer (6 studies, 12.5%); lung cancer (12 studies, 25%); sarcoma (5 studies, 10.4%); prostate cancer (3 studies, 6.3%), head and neck cancer (6 studies, 12.5%); gastrointestinal malignancies excluding rectum (7 studies, 14.6%) and other disease sites (4 studies, 8.3%). The median RQS of all studies was 25% (mean 21% ± 12%), with 13 studies (30.2%) achieving a quality score < 10% and 22 studies (51.2%) < 25%. CONCLUSIONS Delta radiomics shows potential benefit for several clinical endpoints in oncology, such asdifferential diagnosis, prognosis and prediction of treatment response, evaluation of side effects. Nevertheless, the studies included in this systematic review suffer from the bias of overall low methodological rigor, so that the conclusions are currently heterogeneous, not robust and hardly replicable. Further research with prospective and multicenter studies is needed for the clinical validation of delta radiomics approaches.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy.
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Dino Rubini
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Federico Gagliardi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Sara Del Tufo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Maria Paola Belfiore
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Isacco Desideri
- Department of Biomedical, Experimental and Clinical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
4
|
Boldrini L, D'Aviero A, De Felice F, Desideri I, Grassi R, Greco C, Iorio GC, Nardone V, Piras A, Salvestrini V. Artificial intelligence applied to image-guided radiation therapy (IGRT): a systematic review by the Young Group of the Italian Association of Radiotherapy and Clinical Oncology (yAIRO). LA RADIOLOGIA MEDICA 2024; 129:133-151. [PMID: 37740838 DOI: 10.1007/s11547-023-01708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/16/2023] [Indexed: 09/25/2023]
Abstract
INTRODUCTION The advent of image-guided radiation therapy (IGRT) has recently changed the workflow of radiation treatments by ensuring highly collimated treatments. Artificial intelligence (AI) and radiomics are tools that have shown promising results for diagnosis, treatment optimization and outcome prediction. This review aims to assess the impact of AI and radiomics on modern IGRT modalities in RT. METHODS A PubMed/MEDLINE and Embase systematic review was conducted to investigate the impact of radiomics and AI to modern IGRT modalities. The search strategy was "Radiomics" AND "Cone Beam Computed Tomography"; "Radiomics" AND "Magnetic Resonance guided Radiotherapy"; "Radiomics" AND "on board Magnetic Resonance Radiotherapy"; "Artificial Intelligence" AND "Cone Beam Computed Tomography"; "Artificial Intelligence" AND "Magnetic Resonance guided Radiotherapy"; "Artificial Intelligence" AND "on board Magnetic Resonance Radiotherapy" and only original articles up to 01.11.2022 were considered. RESULTS A total of 402 studies were obtained using the previously mentioned search strategy on PubMed and Embase. The analysis was performed on a total of 84 papers obtained following the complete selection process. Radiomics application to IGRT was analyzed in 23 papers, while a total 61 papers were focused on the impact of AI on IGRT techniques. DISCUSSION AI and radiomics seem to significantly impact IGRT in all the phases of RT workflow, even if the evidence in the literature is based on retrospective data. Further studies are needed to confirm these tools' potential and provide a stronger correlation with clinical outcomes and gold-standard treatment strategies.
Collapse
Affiliation(s)
- Luca Boldrini
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario IRCCS "A. Gemelli", Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea D'Aviero
- Radiation Oncology, Mater Olbia Hospital, Olbia, Sassari, Italy
| | - Francesca De Felice
- Radiation Oncology, Department of Radiological, Policlinico Umberto I, Rome, Italy
- Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Isacco Desideri
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Carlo Greco
- Department of Radiation Oncology, Università Campus Bio-Medico di Roma, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | | | - Valerio Nardone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Antonio Piras
- UO Radioterapia Oncologica, Villa Santa Teresa, Bagheria, Palermo, Italy.
| | - Viola Salvestrini
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Cyberknife Center, Istituto Fiorentino di Cura e Assistenza (IFCA), 50139, Florence, Italy
| |
Collapse
|
5
|
Abu-Khudir R, Hafsa N, Badr BE. Identifying Effective Biomarkers for Accurate Pancreatic Cancer Prognosis Using Statistical Machine Learning. Diagnostics (Basel) 2023; 13:3091. [PMID: 37835833 PMCID: PMC10572229 DOI: 10.3390/diagnostics13193091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic cancer (PC) has one of the lowest survival rates among all major types of cancer. Consequently, it is one of the leading causes of mortality worldwide. Serum biomarkers historically correlate well with the early prognosis of post-surgical complications of PC. However, attempts to identify an effective biomarker panel for the successful prognosis of PC were almost non-existent in the current literature. The current study investigated the roles of various serum biomarkers including carbohydrate antigen 19-9 (CA19-9), chemokine (C-X-C motif) ligand 8 (CXCL-8), procalcitonin (PCT), and other relevant clinical data for identifying PC progression, classified into sepsis, recurrence, and other post-surgical complications, among PC patients. The most relevant biochemical and clinical markers for PC prognosis were identified using a random-forest-powered feature elimination method. Using this informative biomarker panel, the selected machine-learning (ML) classification models demonstrated highly accurate results for classifying PC patients into three complication groups on independent test data. The superiority of the combined biomarker panel (Max AUC-ROC = 100%) was further established over using CA19-9 features exclusively (Max AUC-ROC = 75%) for the task of classifying PC progression. This novel study demonstrates the effectiveness of the combined biomarker panel in successfully diagnosing PC progression and other relevant complications among Egyptian PC survivors.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Chemistry Department, College of Science, King Faisal University, P.O. Box 380, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Noor Hafsa
- Computer Science Department, College of Computer Science and Information Technology, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia;
| | - Badr E. Badr
- Egyptian Ministry of Labor, Training and Research Department, Tanta 31512, Egypt;
- Botany Department, Microbiology Unit, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
6
|
Huang B, Huang H, Zhang S, Zhang D, Shi Q, Liu J, Guo J. Artificial intelligence in pancreatic cancer. Theranostics 2022; 12:6931-6954. [PMID: 36276650 PMCID: PMC9576619 DOI: 10.7150/thno.77949] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic cancer is the deadliest disease, with a five-year overall survival rate of just 11%. The pancreatic cancer patients diagnosed with early screening have a median overall survival of nearly ten years, compared with 1.5 years for those not diagnosed with early screening. Therefore, early diagnosis and early treatment of pancreatic cancer are particularly critical. However, as a rare disease, the general screening cost of pancreatic cancer is high, the accuracy of existing tumor markers is not enough, and the efficacy of treatment methods is not exact. In terms of early diagnosis, artificial intelligence technology can quickly locate high-risk groups through medical images, pathological examination, biomarkers, and other aspects, then screening pancreatic cancer lesions early. At the same time, the artificial intelligence algorithm can also be used to predict the survival time, recurrence risk, metastasis, and therapy response which could affect the prognosis. In addition, artificial intelligence is widely used in pancreatic cancer health records, estimating medical imaging parameters, developing computer-aided diagnosis systems, etc. Advances in AI applications for pancreatic cancer will require a concerted effort among clinicians, basic scientists, statisticians, and engineers. Although it has some limitations, it will play an essential role in overcoming pancreatic cancer in the foreseeable future due to its mighty computing power.
Collapse
Affiliation(s)
- Bowen Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haoran Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shuting Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Dingyue Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qingya Shi
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jianzhou Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Junchao Guo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|