1
|
Zhang X, Zhang M, Sun H, Wang X, Wang X, Sheng W, Xu M. The role of transcription factors in the crosstalk between cancer-associated fibroblasts and tumor cells. J Adv Res 2025; 67:121-132. [PMID: 38309692 DOI: 10.1016/j.jare.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Transcription factors (TFs) fulfill a critical role in the formation and maintenance of different cell types during the developmental process as well as disease. It is believed that cancer-associated fibroblasts (CAFs) are activation status of tissue-resident fibroblasts or derived from form other cell types via transdifferentiation or dedifferentiation. Despite a subgroup of CAFs exhibit anti-cancer effects, most of them are reported to exert effects on tumor progression, further indicating their heterogeneous origin. AIM OF REVIEW This review aimed to summarize and review the roles of TFs in the reciprocal crosstalk between CAFs and tumor cells, discuss the emerging mechanisms, and their roles in cell-fate decision, cellular reprogramming and advancing our understanding of the gene regulatory networks over the period of cancer initiation and progression. KEY SCIENTIFIC CONCEPTS OF REVIEW This manuscript delves into the key contributory factors of TFs that are involved in activating CAFs and maintaining their unique states. Additionally, it explores how TFs play a pivotal and multifaceted role in the reciprocal crosstalk between CAFs and tumor cells. This includes their involvement in processes such as epithelial-mesenchymal transition (EMT), proliferation, invasion, and metastasis, as well as metabolic reprogramming. TFs also have a role in constructing an immunosuppressive microenvironment, inducing resistance to radiation and chemotherapy, facilitating angiogenesis, and even 'educating' CAFs to support the malignancies of tumor cells. Furthermore, this manuscript delves into the current status of TF-targeted therapy and considers the future directions of TFs in conjunction with anti-CAFs therapies to address the challenges in clinical cancer treatment.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Meng Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Hui Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xu Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xin Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China.
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Wang Z, Li R, Yang G, Wang Y. Cancer stem cell biomarkers and related signalling pathways. J Drug Target 2024; 32:33-44. [PMID: 38095181 DOI: 10.1080/1061186x.2023.2295222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/10/2023] [Indexed: 12/20/2023]
Abstract
Cancer stem cells (CSCs) represent a distinct subset of neoplastic cells characterised by their heightened capacity for tumorigenesis. These cells are implicated in the facilitation of cancer metastasis, recurrence, and resistance to conventional therapeutic interventions. Extensive scientific research has been devoted to the identification of biomarkers and the elucidation of molecular mechanisms in order to improve targeted therapeutic approaches. Accurate identification of cancer stem cells based on biomarkers can provide a theoretical basis for drug combinations of malignant tumours. Targeted biomarker-based therapies also offer a silver lining for patients with advanced malignancies. This review aims comprehensively to consolidate the latest findings on CSCs biomarkers, targeted agents as well as biomarkers associated signalling pathways in well-established cancer types, thereby contributing to improved prognostic outcomes.
Collapse
Affiliation(s)
- Zhe Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Infectious Disease, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Rui Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guilin Yang
- Department of Infectious Disease, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Yijin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
3
|
Ruiz-Malagón AJ, Rodríguez-Sojo MJ, Redondo E, Rodríguez-Cabezas ME, Gálvez J, Rodríguez-Nogales A. Systematic review: The gut microbiota as a link between colorectal cancer and obesity. Obes Rev 2024:e13872. [PMID: 39614602 DOI: 10.1111/obr.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Microbiome modulation is one of the novel strategies in medicine with the greatest future to improve the health of individuals and reduce the risk of different conditions, including metabolic, immune, inflammatory, and degenerative diseases, as well as cancer. Regarding the latter, many studies have reported the role of the gut microbiome in carcinogenesis, formation and progression of colorectal cancer (CRC), as well as its response to different systemic therapies. Likewise, obesity, one of the most important risk factors for CRC, is also well known for its association with gut dysbiosis. Moreover, obesity and CRC display, apart from microbial dysbiosis, chronic inflammation, which participates in their pathogenesis. Although human and murine studies demonstrate the significant impact of the microbiome in regulating energy metabolism and CRC development, little is understood about the contribution of the microbiome to the development of obesity-associated CRC. Therefore, this systematic review explores the evidence for microbiome changes associated with these conditions and hypothesizes that this may contribute to the pathogenesis of obesity-related CRC. Two databases were searched, and different studies on the relationship among obesity, intestinal microbiota and CRC in clinical and preclinical models were selected. Data extraction was carried out by two reviewers independently, and 101 studies were finally considered. Findings indicate the existence of a risk association between obesity and CRC derived from metabolic, immune, and microbial disorders.
Collapse
Affiliation(s)
- Antonio Jesús Ruiz-Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malga, Spain
| | - María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Eduardo Redondo
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- Servicio de Digestivo, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| |
Collapse
|
4
|
Antoon R, Overdevest N, Saleh AH, Keating A. Mesenchymal stromal cells as cancer promoters. Oncogene 2024; 43:3545-3555. [PMID: 39414984 PMCID: PMC11602730 DOI: 10.1038/s41388-024-03183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024]
Abstract
Mesenchymal stromal cells (MSCs) are important cellular constituents of tumor stroma that play an active role in tumor development. Complex interactions between MSCs and cancer promote tumor progression by creating a favorable milieu for tumor cell proliferation, angiogenesis, motility, invasion, and metastasis. The cellular heterogeneity, source of origin, diversity in isolation methods, culture techniques and model systems of MSCs, together with the different tumor subtypes, add to the complexity of MSC-tumor interactions. In this review, we discuss the mechanisms of MSC-mediated tumor promotion and evaluate cell-stromal interactions between cancer cells, MSCs, cells of the tumor microenvironment (TME), and the extracellular matrix (ECM). A more thorough understanding of tumor-MSC interactions is likely to lead to better cancer management.
Collapse
Affiliation(s)
| | | | - Amr H Saleh
- Faculty of Medicine, University of Alberta, Edmonton, AB, Canada.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | - Armand Keating
- Krembil Research Institute, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
- University Health Network, Toronto, ON, Canada.
| |
Collapse
|
5
|
Song Y, Song Q, Hu D, Sun B, Gao M, Liang X, Qu B, Suo L, Yin Z, Wang L. The potential applications of artificially modified exosomes derived from mesenchymal stem cells in tumor therapy. Front Oncol 2024; 13:1299384. [PMID: 38250549 PMCID: PMC10798044 DOI: 10.3389/fonc.2023.1299384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have tumor-homing ability and play critical roles in tumor treatment, but their dual influences on tumor progression limit their therapeutic applications. Exosomes derived from MSCs (MSC-exosomes) exhibit great potential in targeted tumor treatment due to their advantages of high stability, low immunogenicity, good biocompatibility, long circulation time and homing characteristics. Furthermore, the artificial modification of MSC-exosomes could amplify their advantages and their inhibitory effect on tumors and could overcome the limit of tumor-promoting effect. In this review, we summarize the latest therapeutic strategies involving artificially modified MSC-exosomes in tumor treatment, including employing these exosomes as nanomaterials to carry noncoding RNAs or their inhibitors and anticancer drugs, and genetic engineering modification of MSC-exosomes. We also discuss the feasibility of utilizing artificially modified MSC-exosomes as an emerging cell-free method for tumor treatment and related challenges.
Collapse
Affiliation(s)
- Yilin Song
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Quanlin Song
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Daosheng Hu
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Binwen Sun
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingwei Gao
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangnan Liang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Boxin Qu
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lida Suo
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zeli Yin
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liming Wang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Sun L, Yao Y. Mesenchymal stem/stromal cells- a principal element for tumour microenvironment heterogeneity. Front Immunol 2023; 14:1274379. [PMID: 37885883 PMCID: PMC10599013 DOI: 10.3389/fimmu.2023.1274379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
The heterogeneity of the tumor microenvironment (TME) is a major obstacle in cancer treatment, making most therapeutic interventions palliative rather than curative. Previous studies have suggested that the reason for the low efficacy of immunotherapy and the relapse of the original responders over time may be due to the complex network of mesenchymal stem/stromal cells (MSCs), a population of multipotent progenitor cells existing in a variety of tissues. Cancer-associated MSCs (CA-MSCs) have already been isolated from various types of tumors and are characterized by their vigorous pro-tumorigenic functions. Although the roles of CA-MSCs from different sources vary widely, their origins are still poorly understood. Current evidence suggests that when local resident or distally recruited MSCs interact with tumor cells and other components in the TME, "naïve" MSCs undergo genetic and functional changes to form CA-MSCs. In this review, we mainly focus on the multiple roles of CA-MSCs derived from different sources, which may help in elucidating the formation and function of the entire TME, as well as discover innovative targets for anti-cancer therapies.
Collapse
Affiliation(s)
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu University, Kunshan, China
| |
Collapse
|
7
|
Hashemi M, Abbaszadeh S, Rashidi M, Amini N, Talebi Anaraki K, Motahhary M, Khalilipouya E, Harif Nashtifani A, Shafiei S, Ramezani Farani M, Nabavi N, Salimimoghadam S, Aref AR, Raesi R, Taheriazam A, Entezari M, Zha W. STAT3 as a newly emerging target in colorectal cancer therapy: Tumorigenesis, therapy response, and pharmacological/nanoplatform strategies. ENVIRONMENTAL RESEARCH 2023; 233:116458. [PMID: 37348629 DOI: 10.1016/j.envres.2023.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/11/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Colorectal cancer (CRC) ranks as the third most aggressive tumor globally, and it can be categorized into two forms: colitis-mediated CRC and sporadic CRC. The therapeutic approaches for CRC encompass surgical intervention, chemotherapy, and radiotherapy. However, even with the implementation of these techniques, the 5-year survival rate for metastatic CRC remains at a mere 12-14%. In the realm of CRC treatment, gene therapy has emerged as a novel therapeutic approach. Among the crucial molecular pathways that govern tumorigenesis, STAT3 plays a significant role. This pathway is subject to regulation by cytokines and growth factors. Once translocated into the nucleus, STAT3 influences the expression levels of factors associated with cell proliferation and metastasis. Literature suggests that the upregulation of STAT3 expression is observed as CRC cells progress towards metastatic stages. Consequently, elevated STAT3 levels serve as a significant determinant of poor prognosis and can be utilized as a diagnostic factor for cancer patients. The biological and malignant characteristics of CRC cells contribute to low survival rates in patients, as the upregulation of STAT3 prevents apoptosis and promotes pro-survival autophagy, thereby accelerating tumorigenesis. Furthermore, STAT3 plays a role in facilitating the proliferation of CRC cells through the stimulation of glycolysis and promoting metastasis via the induction of epithelial-mesenchymal transition (EMT). Notably, an intriguing observation is that the upregulation of STAT3 can mediate resistance to 5-fluorouracil, oxaliplatin, and other anti-cancer drugs. Moreover, the radio-sensitivity of CRC diminishes with increased STAT3 expression. Compounds such as curcumin, epigallocatechin gallate, and other anti-tumor agents exhibit the ability to suppress STAT3 and its associated pathways, thereby impeding tumorigenesis in CRC. Furthermore, it is worth noting that nanostructures have demonstrated anti-proliferative and anti-metastatic properties in CRC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Abbaszadeh
- Faculty of Medicine, Islamic Azad University Tonekabon Branch, Tonekabon, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nafisesadat Amini
- Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Ensi Khalilipouya
- Department of Radiology, Mahdiyeh Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sasan Shafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
| | - Rasoul Raesi
- Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Wenliang Zha
- Second Affiliated Hospital, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
8
|
Huang W, Wei ZQ, Qiu YH, Tang G, Sun H. Effects of wound infection on prognosis after laparoscopic abdominoperineal resection of rectal cancer. Front Oncol 2023; 12:1036241. [PMID: 36686786 PMCID: PMC9846744 DOI: 10.3389/fonc.2022.1036241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Background In two facilities in Chongqing, this research sought to retrospectively evaluate the effects of perineal wound infection on survival after laparoscopic abdominoperineal resection (LAPR) of rectal cancer. Methods To obtain clinical information on patients who underwent LAPR between January 2013 and December 2021, we performed a multicenter cohort study. A total of 473 patients were enrolled: 314 in the non-infection group and 159 in the group with perineal infection. The general data, perioperative conditions, and tumor outcomes between groups were analyzed. The infection rates, recurrence rates, and survival rates of the two centers were compared. Results The age, height, weight, body mass index (BMI), preoperative complications, preoperative treatment, and intraoperative conditions of patients in the LAPR infection group were not statistically different from those in the non-infection group. The percentage of men, typical postoperative hospital stay, length of initial postoperative therapy, and recurrence and metastasis rates were all considerably higher in the infection group than those in the non-infection group. Wound infection was an independent factor affecting tumor recurrence and metastasis after LAPR as well as an independent factor shortening patient survival time according to multivariate analysis. The incidence of wound infection, the rate of recurrence, and the rate of mortality did not vary significantly across sites. Conclusion Wound infection after LAPR increases the mean postoperative hospital stay, prolongs the time to first postoperative treatment, and decreases the disease-free survival (DFS) and overall survival (OS). Therefore, decreasing the rate of LAPR wound infection is expected to shorten the postoperative hospital stay and prolong the patient DFS and OS. Patients with postoperative infection may require intensive adjuvant therapy.
Collapse
Affiliation(s)
- Wang Huang
- Department of Gastrointestinal Surgery, Chongqing University Cancer Hospital, Chongqing, China
| | - Zheng-qiang Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-hao Qiu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Tang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Sun
- Department of Gastrointestinal Surgery, Chongqing University Cancer Hospital, Chongqing, China,*Correspondence: Hao Sun,
| |
Collapse
|