1
|
Hu W, Zhao Y, Ji H, Chen A, Xu Q, Liu Y, Zhang Z, Liu A. Nomogram based on dual-energy CT-derived extracellular volume fraction for the prediction of microsatellite instability status in gastric cancer. Front Oncol 2024; 14:1370031. [PMID: 38854729 PMCID: PMC11156999 DOI: 10.3389/fonc.2024.1370031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/03/2024] [Indexed: 06/11/2024] Open
Abstract
Purpose To develop and validate a nomogram based on extracellular volume (ECV) fraction derived from dual-energy CT (DECT) for preoperatively predicting microsatellite instability (MSI) status in gastric cancer (GC). Materials and methods A total of 123 patients with GCs who underwent contrast-enhanced abdominal DECT scans were retrospectively enrolled. Patients were divided into MSI (n=41) and microsatellite stability (MSS, n=82) groups according to postoperative immunohistochemistry staining, then randomly assigned to the training (n=86) and validation cohorts (n=37). We extracted clinicopathological characteristics, CT imaging features, iodine concentrations (ICs), and normalized IC values against the aorta (nICs) in three enhanced phases. The ECV fraction derived from the iodine density map at the equilibrium phase was calculated. Univariate and multivariable logistic regression analyses were used to identify independent risk predictors for MSI status. Then, a nomogram was established, and its performance was evaluated by ROC analysis and Delong test. Its calibration performance and clinical utility were assessed by calibration curve and decision curve analysis, respectively. Results The ECV fraction, tumor location, and Borrmann type were independent predictors of MSI status (all P < 0.05) and were used to establish the nomogram. The nomogram yielded higher AUCs of 0.826 (0.729-0.899) and 0.833 (0.675-0.935) in training and validation cohorts than single variables (P<0.05), with good calibration and clinical utility. Conclusions The nomogram based on DECT-derived ECV fraction has the potential as a noninvasive biomarker to predict MSI status in GC patients.
Collapse
Affiliation(s)
- Wenjun Hu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ying Zhao
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Dalian Engineering Research Center for Artificial Intelligence in Medical Imaging, Dalian, Liaoning, China
| | - Hongying Ji
- Department of Pathology, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Anliang Chen
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Dalian Engineering Research Center for Artificial Intelligence in Medical Imaging, Dalian, Liaoning, China
| | - Qihao Xu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yijun Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ziming Zhang
- College of Medical Imaging, Dalian Medical University, Dalian, Liaoning, China
| | - Ailian Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Dalian Engineering Research Center for Artificial Intelligence in Medical Imaging, Dalian, Liaoning, China
| |
Collapse
|
2
|
Chen M, Jiang Y, Zhou X, Wu D, Xie Q. Dual-Energy Computed Tomography in Detecting and Predicting Lymph Node Metastasis in Malignant Tumor Patients: A Comprehensive Review. Diagnostics (Basel) 2024; 14:377. [PMID: 38396416 PMCID: PMC10888055 DOI: 10.3390/diagnostics14040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The accurate and timely assessment of lymph node involvement is paramount in the management of patients with malignant tumors, owing to its direct correlation with cancer staging, therapeutic strategy formulation, and prognostication. Dual-energy computed tomography (DECT), as a burgeoning imaging modality, has shown promising results in the diagnosis and prediction of preoperative metastatic lymph nodes in recent years. This article aims to explore the application of DECT in identifying metastatic lymph nodes (LNs) across various cancer types, including but not limited to thyroid carcinoma (focusing on papillary thyroid carcinoma), lung cancer, and colorectal cancer. Through this narrative review, we aim to elucidate the clinical relevance and utility of DECT in the detection and predictive assessment of lymph node metastasis in malignant tumors, thereby contributing to the broader academic discourse in oncologic radiology and diagnostic precision.
Collapse
Affiliation(s)
| | | | | | - Di Wu
- Department of Radiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518036, China; (M.C.); (Y.J.); (X.Z.)
| | - Qiuxia Xie
- Department of Radiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518036, China; (M.C.); (Y.J.); (X.Z.)
| |
Collapse
|
3
|
Chen H, Fang Y, Gu J, Sun P, Yang L, Pan F, Wu H, Ye T. Dual-Layer Spectral Detector Computed Tomography Quantitative Parameters: A Potential Tool for Lymph Node Activity Determination in Lymphoma Patients. Diagnostics (Basel) 2024; 14:149. [PMID: 38248026 PMCID: PMC10814325 DOI: 10.3390/diagnostics14020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Dual-energy CT has shown promising results in determining tumor characteristics and treatment effectiveness through spectral data by assessing normalized iodine concentration (nIC), normalized effective atomic number (nZeff), normalized electron density (nED), and extracellular volume (ECV). This study explores the value of quantitative parameters in contrast-enhanced dual-layer spectral detector CT (SDCT) as a potential tool for detecting lymph node activity in lymphoma patients. A retrospective analysis of 55 lymphoma patients with 289 lymph nodes, assessed through 18FDG-PET/CT and the Deauville five-point scale, revealed significantly higher values of nIC, nZeff, nED, and ECV in active lymph nodes compared to inactive ones (p < 0.001). Generalized linear mixed models showed statistically significant fixed-effect parameters for nIC, nZeff, and ECV (p < 0.05). The area under the receiver operating characteristic curve (AUROC) values of nIC, nZeff, and ECV reached 0.822, 0.845, and 0.811 for diagnosing lymph node activity. In conclusion, the use of g nIC, nZeff, and ECV as alternative imaging biomarkers to PET/CT for identifying lymph node activity in lymphoma holds potential as a reliable diagnostic tool that can guide treatment decisions.
Collapse
Affiliation(s)
- Hebing Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (H.C.); (Y.F.); (J.G.); (L.Y.); (F.P.)
- Hubei Province Key Laboratory of Molecular Imaging, Jiefang Avenue #1277, Wuhan 430022, China
| | - Yuxiang Fang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (H.C.); (Y.F.); (J.G.); (L.Y.); (F.P.)
- Hubei Province Key Laboratory of Molecular Imaging, Jiefang Avenue #1277, Wuhan 430022, China
| | - Jin Gu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (H.C.); (Y.F.); (J.G.); (L.Y.); (F.P.)
- Hubei Province Key Laboratory of Molecular Imaging, Jiefang Avenue #1277, Wuhan 430022, China
| | - Peng Sun
- Clinical & Technical Support, Philips Healthcare, Floor 7, Building 2, World Profit Center, Beijing 100000, China;
| | - Lian Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (H.C.); (Y.F.); (J.G.); (L.Y.); (F.P.)
- Hubei Province Key Laboratory of Molecular Imaging, Jiefang Avenue #1277, Wuhan 430022, China
| | - Feng Pan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (H.C.); (Y.F.); (J.G.); (L.Y.); (F.P.)
- Hubei Province Key Laboratory of Molecular Imaging, Jiefang Avenue #1277, Wuhan 430022, China
| | - Hongying Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (H.C.); (Y.F.); (J.G.); (L.Y.); (F.P.)
- Hubei Province Key Laboratory of Molecular Imaging, Jiefang Avenue #1277, Wuhan 430022, China
| | - Tianhe Ye
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (H.C.); (Y.F.); (J.G.); (L.Y.); (F.P.)
- Hubei Province Key Laboratory of Molecular Imaging, Jiefang Avenue #1277, Wuhan 430022, China
| |
Collapse
|
4
|
Chen Y, Shi K, Li Z, Wang H, Liu N, Zhan P, Liu X, Shang B, Hou P, Gao J, Lyu P. Survival prediction of hepatocellular carcinoma by measuring the extracellular volume fraction with single-phase contrast-enhanced dual-energy CT imaging. Front Oncol 2023; 13:1199426. [PMID: 37538109 PMCID: PMC10394647 DOI: 10.3389/fonc.2023.1199426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/23/2023] [Indexed: 08/05/2023] Open
Abstract
Purpose This study aimed to investigate the value of quantified extracellular volume fraction (fECV) derived from dual-energy CT (DECT) for predicting the survival outcomes of patients with hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE). Materials and methods A total of 63 patients with HCC who underwent DECT before treatment were retrospectively included. Virtual monochromatic images (VMI) (70 keV) and iodine density images (IDI) during the equilibrium phase (EP) were generated. The tumor VMI-fECV and IDI-fECV were measured and calculated on the whole tumor (Whole) and maximum enhancement of the tumor (Maximum), respectively. Univariate and multivariate Cox models were used to evaluate the effects of clinical and imaging predictors on overall survival (OS) and progression-free survival (PFS). Results The correlation between tumor VMI-fECV and IDI-fECV was strong (both p< 0.001). The Bland-Altman plot between VMI-fECV and IDI-fECV showed a bias of 5.16% for the Whole and 6.89% for the Maximum modalities, respectively. Increasing tumor VMI-fECV and IDI-fECV were positively related to the effects on OS and PFS (both p< 0.05). The tumor IDI-fECV-Maximum was the only congruent independent predictor in patients with HCC after TACE in the multivariate analysis on OS (p = 0.000) and PFS (p = 0.028). Patients with higher IDI-fECV-Maximum values had better survival rates above the optimal cutoff values, which were 35.42% for OS and 29.37% for PFS. Conclusion The quantified fECV determined by the equilibrium-phase contrast-enhanced DECT can potentially predict the survival outcomes of patients with HCC following TACE treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kexin Shi
- Department of Clinical Medicine, Henan Medical School of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huixia Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nana Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengchao Zhan
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xing Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Shang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ping Hou
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peijie Lyu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Honda T, Onishi H, Fukui H, Yano K, Kiso K, Nakamoto A, Tsuboyama T, Ota T, Tatsumi M, Tahara S, Kobayashi S, Eguchi H, Tomiyama N. Extracellular volume fraction using contrast-enhanced CT is useful in differentiating intrahepatic cholangiocellular carcinoma from hepatocellular carcinoma. Front Oncol 2023; 13:1214977. [PMID: 37483497 PMCID: PMC10359704 DOI: 10.3389/fonc.2023.1214977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Objectives To evaluate whether tumor extracellular volume fraction (fECV) on contrast-enhanced computed tomography (CT) aids in the differentiation between intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC). Methods In this retrospective study, 113 patients with pathologically confirmed ICC (n = 39) or HCC (n = 74) who had undergone preoperative contrast-enhanced CT were enrolled. Enhancement values of the tumor (Etumor) and aorta (Eaorta) were obtained in the precontrast and equilibrium phase CT images. fECV was calculated using the following equation: fECV [%] = Etumor/Eaorta × (100 - hematocrit [%]). fECV values were compared between the ICC and HCC groups using Welch's t-test. The diagnostic performance of fECV for differentiating ICC and HCC was assessed using receiver-operating characteristic (ROC) analysis. fECV and the CT imaging features of tumors were evaluated by two radiologists. Multivariate logistic regression analysis was performed to identify factors predicting a diagnosis of ICC. Results Mean fECV was significantly higher in ICCs (43.8% ± 13.2%) than that in HCCs (31.6% ± 9.0%, p < 0.001). The area under the curve for differentiating ICC from HCC was 0.763 when the cutoff value of fECV was 41.5%. The multivariate analysis identified fECV (unit OR: 1.10; 95% CI: 1.01-1.21; p < 0.05), peripheral rim enhancement during the arterial phase (OR: 17.0; 95% CI: 1.29-225; p < 0.05), and absence of washout pattern (OR: 235; 95% CI: 14.03-3933; p < 0.001) as independent CT features for differentiating between the two tumor types. Conclusions A high value of fECV, peripheral rim enhancement during the arterial phase, and absence of washout pattern were independent factors in the differentiation of ICC from HCC.
Collapse
Affiliation(s)
- T. Honda
- Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - H. Onishi
- Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - H. Fukui
- Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - K. Yano
- Department of Radiology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - K. Kiso
- Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - A. Nakamoto
- Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - T. Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - T. Ota
- Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - M. Tatsumi
- Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - S. Tahara
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - S. Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - H. Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - N. Tomiyama
- Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|