1
|
de Pellegars-Malhortie A, Picque Lasorsa L, Mazard T, Granier F, Prévostel C. Why Is Wnt/β-Catenin Not Yet Targeted in Routine Cancer Care? Pharmaceuticals (Basel) 2024; 17:949. [PMID: 39065798 PMCID: PMC11279613 DOI: 10.3390/ph17070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite significant progress in cancer prevention, screening, and treatment, the still limited number of therapeutic options is an obstacle towards increasing the cancer cure rate. In recent years, many efforts were put forth to develop therapeutics that selectively target different components of the oncogenic Wnt/β-catenin signaling pathway. These include small molecule inhibitors, antibodies, and more recently, gene-based approaches. Although some of them showed promising outcomes in clinical trials, the Wnt/β-catenin pathway is still not targeted in routine clinical practice for cancer management. As for most anticancer treatments, a critical limitation to the use of Wnt/β-catenin inhibitors is their therapeutic index, i.e., the difficulty of combining effective anticancer activity with acceptable toxicity. Protecting healthy tissues from the effects of Wnt/β-catenin inhibitors is a major issue due to the vital role of the Wnt/β-catenin signaling pathway in adult tissue homeostasis and regeneration. In this review, we provide an up-to-date summary of clinical trials on Wnt/β-catenin pathway inhibitors, examine their anti-tumor activity and associated adverse events, and explore strategies under development to improve the benefit/risk profile of this therapeutic approach.
Collapse
Affiliation(s)
- Auriane de Pellegars-Malhortie
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| | - Laurence Picque Lasorsa
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| | - Thibault Mazard
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
- Medical Oncology Department, ICM, University of Montpellier, CEDEX 5, 34298 Montpellier, France
| | | | - Corinne Prévostel
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| |
Collapse
|
2
|
Shen Y, Wang Y, Wang SY, Li C, Han FJ. Research progress on the application of organoids in gynecological tumors. Front Pharmacol 2024; 15:1417576. [PMID: 38989138 PMCID: PMC11234177 DOI: 10.3389/fphar.2024.1417576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Organoids are in vitro 3D models that maintain their own tissue structure and function. They largely overcome the limitations of traditional tumor models and have become a powerful research tool in the field of oncology in recent years. Gynecological malignancies are major diseases that seriously threaten the life and health of women and urgently require the establishment of models with a high degree of similarity to human tumors for clinical studies to formulate individualized treatments. Currently, organoids are widely studied in exploring the mechanisms of gynecological tumor development as a means of drug screening and individualized medicine. Ovarian, endometrial, and cervical cancers as common gynecological malignancies have high morbidity and mortality rates among other gynecological tumors. Therefore, this study reviews the application of modelling, drug efficacy assessment, and drug response prediction for ovarian, endometrial, and cervical cancers, thereby clarifying the mechanisms of tumorigenesis and development, and providing precise treatment options for gynecological oncology patients.
Collapse
Affiliation(s)
- Ying Shen
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Wang
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Si-Yu Wang
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chan Li
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng-Juan Han
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Lee J, Jang S, Im J, Han Y, Kim S, Jo H, Wang W, Cho U, Kim SI, Seol A, Kim B, Song YS. Stearoyl-CoA desaturase 1 inhibition induces ER stress-mediated apoptosis in ovarian cancer cells. J Ovarian Res 2024; 17:73. [PMID: 38566208 PMCID: PMC10988872 DOI: 10.1186/s13048-024-01389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Ovarian cancer is a leading cause of death among gynecologic tumors, often detected at advanced stages. Metabolic reprogramming and increased lipid biosynthesis are key factors driving cancer cell growth. Stearoyl-CoA desaturase 1 (SCD1) is a crucial enzyme involved in de novo lipid synthesis, producing mono-unsaturated fatty acids (MUFAs). Here, we aimed to investigate the expression and significance of SCD1 in epithelial ovarian cancer (EOC). Comparative analysis of normal ovarian surface epithelial (NOSE) tissues and cell lines revealed elevated SCD1 expression in EOC tissues and cells. Inhibition of SCD1 significantly reduced the proliferation of EOC cells and patient-derived organoids and induced apoptotic cell death. Interestingly, SCD1 inhibition did not affect the viability of non-cancer cells, indicating selective cytotoxicity against EOC cells. SCD1 inhibition on EOC cells induced endoplasmic reticulum (ER) stress by activating the unfolded protein response (UPR) sensors and resulted in apoptosis. The addition of exogenous oleic acid, a product of SCD1, rescued EOC cells from ER stress-mediated apoptosis induced by SCD1 inhibition, underscoring the importance of lipid desaturation for cancer cell survival. Taken together, our findings suggest that the inhibition of SCD1 is a promising biomarker as well as a novel therapeutic target for ovarian cancer by regulating ER stress and inducing cancer cell apoptosis.
Collapse
Affiliation(s)
- Juwon Lee
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Suin Jang
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jihye Im
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Youngjin Han
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - HyunA Jo
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Wenyu Wang
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Untack Cho
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Aeran Seol
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Boyun Kim
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan, Republic of Korea
| | - Yong Sang Song
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea.
- Department of Obstetrics and Gynecology, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea.
| |
Collapse
|
4
|
Hu H, Sun C, Chen J, Li Z. Organoids in ovarian cancer: a platform for disease modeling, precision medicine, and drug assessment. J Cancer Res Clin Oncol 2024; 150:146. [PMID: 38509422 PMCID: PMC10955023 DOI: 10.1007/s00432-024-05654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
Ovarian cancer (OC) is a major cause of gynecological cancer mortality, necessitating enhanced research. Organoids, cellular clusters grown in 3D model, have emerged as a disruptive paradigm, transcending the limitations inherent to conventional models by faithfully recapitulating key morphological, histological, and genetic attributes. This review undertakes a comprehensive exploration of the potential in organoids derived from murine, healthy population, and patient origins, encompassing a spectrum that spans foundational principles to pioneering applications. Organoids serve as preclinical models, allowing us to predict how patients will respond to treatments and guiding the development of personalized therapies. In the context of evaluating new drugs, organoids act as versatile platforms, enabling thorough testing of innovative combinations and novel agents. Remarkably, organoids mimic the dynamic nature of OC progression, from its initial formation to the spread to other parts of the body, shedding light on intricate details that hold significant importance. By functioning at an individualized level, organoids uncover the complex mechanisms behind drug resistance, revealing strategic opportunities for effective treatments.
Collapse
Affiliation(s)
- Haiyao Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chong'en Sun
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jingyao Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Mocchegiani F, Vincenzi P, Conte G, Nicolini D, Rossi R, Cacciaguerra AB, Vivarelli M. Intraductal papillary neoplasm of the bile duct: The new frontier of biliary pathology. World J Gastroenterol 2023; 29:5361-5373. [PMID: 37900587 PMCID: PMC10600795 DOI: 10.3748/wjg.v29.i38.5361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
Intraductal papillary neoplasms of the bile duct (IPNBs) represent a rare variant of biliary tumors characterized by a papillary growth within the bile duct lumen. Since their first description in 2001, several classifications have been proposed, mainly based on histopathological, radiological and clinical features, although no specific guidelines addressing their management have been developed. Bile duct neoplasms generally develop through a multistep process, involving different precursor pathways, ranging from the initial lesion, detectable only microscopically, i.e. biliary intraepithelial neoplasia, to the distinctive grades of IPNB until the final stage represented by invasive cholangiocarcinoma. Complex and advanced investigations, mainly relying on magnetic resonance imaging (MRI) and cholangioscopy, are required to reach a correct diagnosis and to define an adequate bile duct mapping, which supports proper treatment. The recently introduced subclassifications of types 1 and 2 highlight the histopathological and clinical aspects of IPNB, as well as their natural evolution with a particular focus on prognosis and survival. Aggressive surgical resection, including hepatectomy, pancreaticoduodenectomy or both, represents the treatment of choice, yielding optimal results in terms of survival, although several endoscopic approaches have been described. IPNBs are newly recognized preinvasive neoplasms of the bile duct with high malignant potential. The novel subclassification of types 1 and 2 defines the histological and clinical aspects, prognosis and survival. Diagnosis is mainly based on MRI and cholangioscopy. Surgical resection represents the mainstay of treatment, although endoscopic resection is currently applied to nonsurgically fit patients. New frontiers in genetic research have identified the processes underlying the carcinogenesis of IPNB, to identify targeted therapies.
Collapse
Affiliation(s)
- Federico Mocchegiani
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona 60126, Italy
| | - Paolo Vincenzi
- Department of Gastroenterology and Transplant, United Hospital of Marche, Ancona 60126, Italy
| | - Grazia Conte
- Department of Gastroenterology and Transplant, United Hospital of Marche, Ancona 60126, Italy
| | - Daniele Nicolini
- Department of Gastroenterology and Transplant, United Hospital of Marche, Ancona 60126, Italy
| | - Roberta Rossi
- Department of Gastroenterology and Transplant, United Hospital of Marche, Ancona 60126, Italy
| | | | - Marco Vivarelli
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona 60126, Italy
| |
Collapse
|
6
|
Zhang X, Yu X. Crosstalk between Wnt/β-catenin signaling pathway and DNA damage response in cancer: a new direction for overcoming therapy resistance. Front Pharmacol 2023; 14:1230822. [PMID: 37601042 PMCID: PMC10433774 DOI: 10.3389/fphar.2023.1230822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Wnt signaling plays an important role in regulating the biological behavior of cancers, and many drugs targeting this signaling have been developed. Recently, a series of research have revealed that Wnt signaling could regulate DNA damage response (DDR) which is crucial for maintaining the genomic integrity in cells and closely related to cancer genome instability. Many drugs have been developed to target DNA damage response in cancers. Notably, different components of the Wnt and DDR pathways are involved in crosstalk, forming a complex regulatory network and providing new opportunities for cancer therapy. Here, we provide a brief overview of Wnt signaling and DDR in the field of cancer research and review the interactions between these two pathways. Finally, we also discuss the possibility of therapeutic agents targeting Wnt and DDR as potential cancer treatment strategies.
Collapse
Affiliation(s)
| | - Xiaofeng Yu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Psilopatis I, Sykaras AG, Mandrakis G, Vrettou K, Theocharis S. Patient-Derived Organoids: The Beginning of a New Era in Ovarian Cancer Disease Modeling and Drug Sensitivity Testing. Biomedicines 2022; 11:1. [PMID: 36672509 PMCID: PMC9855526 DOI: 10.3390/biomedicines11010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer (OC) is the leading cause of death from gynecological malignancies. Despite great advances in treatment strategies, therapeutic resistance and the gap between preclinical data and actual clinical efficacy justify the necessity of developing novel models for investigating OC. Organoids represent revolutionary three-dimensional cell culture models, deriving from stem cells and reflecting the primary tissue's biology and pathology. The aim of the current review is to study the current status of mouse- and patient-derived organoids, as well as their potential to model carcinogenesis and perform drug screenings for OC. Herein, we describe the role of organoids in the assessment of high-grade serous OC (HGSOC) cells-of-origin, illustrate their use as promising preclinical OC models and highlight the advantages of organoid technology in terms of disease modelling and drug sensitivity testing.
Collapse
Affiliation(s)
- Iason Psilopatis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
- Department of Gynecology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Alexandros G. Sykaras
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
- Department of Cytopathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Georgios Mandrakis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Kleio Vrettou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| |
Collapse
|